Flexible Diagram Generation
from Tagged Texts

Masashi MURAYAMA Yuichi NAKAMURA Yuichi OHTA
IEMS, University of Tsukuba, 305-8573 Japan

Abstract. This paper introduces a novel diagram generation
scheme for presenting the inner structures of a text. We first de-
scribe how semantic structures of a text can be translated into a
diagram: tagging to a text, followed by translation to a diagram.
The generated diagrams are tightly linked to the texts, and the
media complex of the text and the diagram effectively explains the
contents of a document. In this paper, we focus on generating a
variety of diagrams according to both the contents and the user’s
intention. This approach allows us to obtain comprehensible dia-
grams that serve the user’s purposes.

1 Introduction

Recently, the Internet has given us easy access to vast amount of electronic texts.
Although the benefits of this are great, it is often difficult to locate the desired portions,
since reading is often time-consuming work. The linear structure of a natural language
often forces us to write or read complicated texts.

A diagram, such as a flow chart or a graph, can be an effective solution to this
problem. A diagram that uses structures of two or more dimensions can represent
complicated notions or relationships. Based on this idea, we have proposed a novel
scheme of diagram generation that translates the inner structures of a text[4]. This
method is composed of the following processes:

e Embedding tags for marking up the semantic structure of a text.

e Generating diagrams according to translation rules that reflect a user’s intuition and
customs. Generated diagrams are tightly linked to the text.

e Providing a user interface that presents both the text and the diagrams, and enables
quick access to the essence of the text.

In this paper, we introduce an important extension of this framework. Since in our
previous research the text-to-diagram translation rules had a one-to-one correspondence
and there were only a few of them, the diagrams were generated in a fixed way even
when they were confusing or might not meet the user’s purpose. As a solution to this
problem, we prepared a variety of translation rules, allowing us to obtain comprehensible
diagrams that serve the user’s purposes.

In the following section, we describe the framework of our research. We then present
the correspondence between diagrammatic structures and our XML tagset, and propose
the use of many-to-many correspondence. Finally, we show some experiments using our
method.

2 Framework of Diagrammatic Representation
2.1 Key Idea
The key idea of our framework is to automatically generate a comprehensible di-
agram that corresponds well with the semantic structures in a text. Diagram repre-
sentation can be a useful tool for explaining the contents of a text, if we maintain
conventional rules[3] for drawing diagrams. For humans this is not difficult, since the
rules are loose and diagrams can be designed without seriously breaking the rules. Of-
ten, however, this is time-consuming work, and it would be prohibitive to prepare a
diagram to explain every portion of a text.
In this sense, our scheme of diagram
generation can contribute to information
presentation and management to prevent

economic regime

feudalism, growing capitalists

infOI‘matiOH ﬂOOd. Figure 1 ShOWS an eX_ cavsed the Industrial Revolution.

Industrial Revalution gave rise to

arge factory. rowing capitalists
g g cap

ample of our system output. The left
half of the figure shows a tagged text !
and the right half shows a diagram trans-
lated from the text. In this example,
as the user specifies some portion that i
has drawn his or her attention, the cor- =T @ees ‘
responding portion of the text is high-
lighted.

For this purpose, we have devel-
oped our system mainly on the following
points:

Industrial Revolution

large factory

Figure 1: Our framework for diagram gen-
eration

e We defined a tagset for marking up portions that can be effectively represented by
diagrammatic expressions.

e We determined and implemented the translation rules from the semantic structures
to diagrammatic expressions. Our system also allows and assists the user to modify
a generated diagram, since it is still difficult for the system to arrange a perfect
diagram.

e We developed a GUI that holds and shows tight links between the diagram and the
text. Since a diagram does not have enough information to completely substitute for
a text, the media complex of texts and diagrams is the most effective representation.

Below we describe the first point and then, in the next section, we describe the second

point and the extension of the present study to the previous research.

2.2 Tagging to a Text

Texts contain various kinds of relations, from syntactic structures to deep semantics,
some of which can be effectively represented by diagrams. We have proposed a tagset
for marking up such semantic structures in a text. A tag describes the type of the
semantic structure that each portion has, and the system illustrates the portion based
on the type.

We designed the tagset based on the XML standard, and we can use ordinary tools
for XML documents. Table 1 shows actual tags. <node>, or <n>, is used to mark an the
element such as a word, a phrase, or a sentence. This tag attaches an ID, a role, and a
reference to the element. <relation> marks up the relation between elements. It has
two important attributes: structure shows the structural category of the relation, and

!The tags are invisible in this viewer, since we assume that the users are not good at reading
mark-up languages.

Table 1: Tagset for describing semantic structures of a text

Tag ‘ Note and attributes

<node> or | Mark up An element. id= identifier, nref= reference to other 1D
<n> role= role of the element in composing relation

<relation> | Mark up a relation

structure= structural category of the relation

semantics= semantic category of the relation

Table 2: Structural categories

value Type of relation Required roles of ele-
ment
order order, series, causality, hierarchy, inclu- | upper , medium, lower

sion, subordination, etc.
equivalence | equivalence, equality, coordination, etc. | obj(object), eq(or neq)
(equiv)

modification| explanation, attribution, etc. obj(object),
(mod) mod(modifier)
other general relations(excepting the above) | obj(object)

Table 3: Semantic categories

time chronology, time sequence, etc.

cause causality. cause and effect, or reason and result

space location or locus in physical world

inout means “Input/Output”. material, product, input and output, etc.
process | process, flow of things, flow of topic, etc.

set organization, theory of sets, subordination, etc.

other other semantics

semantics shows the semantic category of the relation. The structural category clas-
sifies the relation based on algebraic characteristics. Table 2 shows this classification.
order means the most common category that expresses an order relation having both
upper and lower elements. equivalence means the equivalent relation. modification
means the relation between a modifier and the word that is modified. other is the
category selected when none of the above types fits. A semantic category denotes what
kind of property a relation specifies. Table 3 shows the semantic categories that we are
currently using.

By the combination of these two types of categorization, we can flexibly denote each
relation. For example, a relation may refer to chronological order by using “order” as
its structural category and “time” as its semantic category?.

This formalism is useful also for information filtering. If we want some information
on chronological order, other structural categories or other kinds of orders (such as a
spatial order, hierarchy, or subordinate) are useless, and we can easily filter them out.
Thus, we can emphasize elements that are the focus of our interest.

2Hereafter, we denote the relations type by a tuple of structural category and semantic category,
such as order&time.

{ Order & * }
{ Equivalence & * }
{ Modification & * }

~

{ Order & set }

~

XML
Network Diagram Region Diagram

Figure 2: Simple correspondence used in our previous research

(a)alignment | (b)simple (c)double link | (d)arrow link | (e)triangle (f)consecutive
link link link
]
| v Q

GO | GO | GO P

(g)enclosure | (h)branch (i)balloon (j)stack (k)arrow box | (1)tree
A v (A)
®)
B O
» | o2V ok

Figure 3: Examples of widely used diagrammatic expressions

‘ type of relation

H 1st candidate ‘ 2nd candidate ‘ 3rd. candidate ‘ 4th candidate ‘

order & time (d) (f) (e) (b)
order & set (g) (h) (d) (b)
equiv & time (c) (b) none none
mod & term (d) (h) (c) none

Figure 4: Examples of the ordered correspondence

3 Diagrammatic Expressions with the Order of Priority

There are various implicit rules and customs in drawing diagrams. A primitive in
a diagram expresses a notion, or a combination of notions. A diagrammatic structure,
such as that of alignment, often represents the relations among them. For example,

area inclusion shows hierarchy or subordination.

An arrow shows direction, order,

or modification. A row of primitive diagrams shows flow, order, or a weak relation.
Although those linguistic functions are not strict, the user can easily and quickly grasp
the outline when the usage of the diagrammatic expressions is consistent with the
semantics of a text.

A

<l<]@<l 4@44@44
0 & &

>

Mo
-/

—®

h@_@
06 6

_Y v
©
@ y Y " C
v
(a) A diagram by our (b) A diagram by our (¢) A diagram gen-
previous research. new system. erated according to

some options.

Figure 5: Sample diagrams for explaining a process flow. A-C are the steps, a-c are the
inputs for the steps, and o — v are the explanations for a-c.

In our previous research, we considered a few diagrammatic expressions for which
translation rules were defined as shown in Fig.2. The simple correspondence is used
for expressing relations as follows: While the pattern of network diagram is always
used for order, equivalence, and modification, the pattern of region diagram is used for
{order & set}. Although a few patterns of diagrammatic expressions may correctly
represent semantic structures, generated diagrams are not always comprehensible. Since
the same diagrammatic expression is often used for two or more different types of
semantic structure in a text, such as “causality” and “modification”, we might feel
difficulties in discriminating between them. This reduces the advantages of utilizing
diagrams.

To cope with this problem, we introduce a more flexible translation by many-to-
many correspondence between semantic structures in a text and diagrammatic expres-
sions. Figure 3 shows examples of widely used diagrammatic expressions. By preparing
a variety of diagrammatic expressions with the order of priority, the system can flexibly
choose appropriate expressions. An example of the ordered preference is shown in Fig.
4. For example, “chronological order”, which is {order&time}, can be represented by
the pattern of arrow link (d). When this expression pattern is already used for rep-
resenting other relations, another pattern (f) is used in order to show the differences.
This mechanism has the following advantages:

e By representing different things in different ways, generated diagrams can be com-
prehensible and less confusing.

e As the focus of interest or the important portion varies from situation to situation, it
may be emphasized by choosing the most prominent expression from among several
candidates.

e The system may adjust diagrammatic description according to the user’s intention
or preference.

We first devised the default preference by examining the diagrammatic expressions
taken from various articles and books ®. The actual pattern selection is based on the
default preference if the user gives no other options. Thus, pattern (d) is the first
candidate for representing {order&time}, and the next candidate is pattern (f).

3Currently, we are investigating this preference by the subjective evaluations of more than 20 users.
The results will be reported in the near future.

First, <n id="X3">attach <n
And then, <n id="A3">attach

<relation structure="order"
<n role="upper" nref="#B2"
<relation structure="order"
<n role="upper" nref="#B3"

id="B2">tires</n></n> to <n
<n id="B3">the body</n></n>

semantics="inout">
/> <n role="obj" nref="#X3"
semantics="inout">
/> <n role="obj" nref="#A3"

id="B1">chassis</n>

/> </relation>

/> </relation>

<relation structure="order" semantics="process'">

<n role="upper" nref="#X3" /> <n role="lower" nref="#A3" /> </relation>

Figure 7: A portion of tagged text: assembling a toy car.

Figure 5 shows sample diagrams for explaining a process flow that requires some
inputs. Figure 5(a) is that is generated by using our previous rules. By using other
patterns of diagrammatic expressions, we can obtain Figure 5(b). This diagram is
more comprehensible, and we can easily grasp the semantic structures. By giving some
options, we obtain Figure 5(c), in which some portions are emphasized and some other
portions are suppressed.

4 Experiments
Input

Tagged Texﬂ

(i) Rearranging Attributes
and Relations

An overview of our system is shown in Fig. 6.
The system takes a tagged text with XML for-
mat as input, parses the text, extracts semantic
descriptions from it, and then translates those de-
scriptions into a diagram. After generating a dia-
gram, the system serves as a diagram editor, which
helps the user to modify the generated diagram
according to the diagram’s purposes or the user’s
intentions.

[Relative Description]
(ii) Separation to Each Element
Translation to Spatial Relation

[Spatial Description]

@m} Drawing
Qutput

Diagram

Figure 7 shows a tagged text for a system in-
put, and Figure 8(a) shows a generated diagram
in which several diagrammatic expressions are ef-
fectively used in the same diagram. The left half
of the diagram represents the process flow of as-
sembling a toy car, and the right half represents
the parts required for the processes. The enclo-
sure represents {order&set}, and the steps of as-
sembling parts and the required parts are visually
grouped by placing them in boxes.

Figure 6: Overview of our sys-

While the above example would be satisfactory tem

in many situations, we can obtain different dia-

grams by giving some additional options. If we

want to focus on the parts of a toy car, we can emphasize them by the following modi-
fications: Using the enclosure pattern only for the parts; omitting other {order&set}
type relations; not using patterns having the same shapes of diagrammatic elements.
Thus, the diagrammatic representation shown in Fig.8(b) is obtained by choosing dif-
ferent patterns from those in the previous example.

How to assemble a toy car

attaching tires parts for toy car

« attaching tires Gttach front tired | chassis

@ setting body attach rear tire Tires
Y

3 attach a wing and bumperl
insert the power tooll - .
= — attach a wing and bumpe

o C

@) @)
insert the power too >« Power Tool

| It's end I
For assembling

It can run > @
turning on the switch @

(a) Example of a generated diagram for a (b) Example of another diagram generated for

tagged text in Fig.7 the same text: Processes are show by the direc-
tions of the arrow-heads, and input-output are
shown by the arrow connection

setting body

<<Q<x<{ .4.

00 0

|

9)

0

9
e<<<

Figure 8: Generated diagram

5 Conclusion

We proposed a novel scheme for generating diagrams that effectively represent the
semantic structures of tagged texts. First we presented the basic framework of the trans-
lation to diagrammatic representations and the tagset for marking up texts. Next, we
proposed the use of many-to-many correspondence between semantic structures in texts
and diagrammatic expressions. We showed that our system generates comprehensible
explanations for a text when the user chooses appropriate diagrammatic expressions.

Although the system works as shown in the experiments, we have many topics to
tackle. There are many useful diagrammatic expressions that are not yet implemented in
our system. The preference settings among expressions are still ongoing in our research.
Better arrangement algorithms for generating diagrams are necessary in order to make
it easier for the user to modify obtained diagrams.

6 References

[1] David Harel. On visual formalism. Communications of ACM, 31(5):514-530, 1988.

[2] Tomihisa Kamada and Satoru Kawai. A general framework for visualizing abstract
objects and relations. ACM Trans. on Graphics, 10(1):1-39, 1 1991.

[3] Corey Kosak, Joe Marks, and Stuart Shiebar. Automating the layout of network
diagrams with specified visual organization. IEEE Trans. on Systems, Man, and
Cybernetics, 24(3):440-454, 1994.

[4] M. Murayama, Y. Nakamura, and Y. Ohta. Diagram generation from tagged texts
toward document navigation. Proc. ICME, 2001,(http://www.image.esys.tsukuba.
ac.jp/members/murayama/work /ICME2001_murayama.pdf).

