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Abstract

In this paper, we propose a method for classifying image edges
caused by different physical phenomena, i.e. reflectance change,
shadow, occlusion, etc., by using color information around the
edge. We assumed several simple models for object spatial ar-
rangements. For each of them, typical locus of RGB values
along the normal direction of each edge segment is modeled.
Each locus is parameterized by several features. In the classi-
fication of actual edges, the most plausible phenomenon is se-
lected by checking the consistency between the parameters from
an actual edge profile and those from each model. For the im-
provement of accuracy, Dempster-Shafer probability model is
employed to deal with the above parameters that are often weak
and uncertain. Experiments showed good performances.

1 Introduction

Intensity discontinuity is one of the most important fea-
tures in analyzing images. Especially color distributions
have extremely useful information for delineating object
boundaries and for discriminating physical phenomena
around edges. Although there has been limited research
on this topic, there are a few related works. Kanade pro-
posed a method for using edge profiles in making a pair or
group of edges [1]. Marik, et. al, proposed edge discrim-
ination based on color distribution [3]. Maxwell, et. al,
proposed a method to utilize an edge profile for image
segmentation [4, 5]. They proved the utility of gray or
color distribution around an edge.

We propose a novel method for using this informa-
tion to discriminate physical phenomena around edges. It
has the following advantages which enable more detailed

scene analysis:

• It utilizes several physical object arrangement models.
• It analyzes a locus in the RGB space.
• It effectively combines weak and ambiguous clues by

Dempster-Shafer theory.

2 Modeling Color Edge Profile

2.1 Physical Edge Model

Intensity changes are usually caused by several typical
phenomena. For these phenomena, we consider six phys-
ical models shown in 1.

Albedo: The albedo changes across edges with no sub-
stantial depth discontinuity.

Occlusion: Two regions belong to different objects meet
at the edge. No substantial shadow exists between the
two objects.

Shadow: Two regions belong to one homogeneous re-
gion on an object. One is a shadow region cast by an-
other object, and the other is directly illuminated by a
normal light source.

Ridge: Two regions border at a ridge or a valley of an
object.

Compound: Two objects overlap, one of the objects
casts a shadow on the other.

Touch: Two regions belong to two objects touching or
close to each other. Direct illumination is attenuated in
the crack or gap.

These phenomena are not always separable: for ex-
ample, an intermediate phenomenon betweenTouchand
Compoundcan be imagined. To cope with this problem,
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Figure 1: Physical phenom-
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Figure 2: Edge profile models in the RGB space
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we use probability model in which a probability can be as-
signed to a set of phenomena. This avoids the risk of over-
specifying the phenomenon without enough information.

2.2 Edge Profile in the RGB Space

In the above model, the most intrinsic characteristics can
be found in the intensity profile along an edge’s gradient.
First, we assume that the RGB value becomes gradually
stable as a sampling point is getting apart from the edge.
Therefore, if we re-sample over enough length, we can
expect at least two clusters at the start and the end of the
sample sequence. LetC1 andC2 be the representative
RGB values,i.e. the cluster centers, on both sides. For
each model presented in the previous section, the ideal
intensity changes can be modeled as follows:
Albedo: Rapid transition from one cluster to the other as

shown in 2(a). The RGB valuep of a locus point can
be modeled as follows:

p = kC1 + (1− k)C2, 0 ≤ k ≤ 1
Occlusion: The same as theAlbedocase except that the

region on the occluding side often has smooth shading.
Shadow: Two color clusters and the origin of the RGB

space are aligned, since we assume the ambient light
can be modeled as the attenuation of the direct light as
shown in 2(b).

C1
∼= kC2, p = k′C1, k′ ≤ k ≤ 1

Ridge: The same asShadowexcept that the edge is often
accompanied by highlights.

Compound: The locus is mainly composed of two parts.
(a) The RGB value quickly changes from the cluster
C1 on the occluding side tokC2 on the shaded part of
the other side,i.e. the attenuated value ofC2. (b) The

RGB value recovers quickly from the attenuated value
kC2 to C2 (2(c)).

p =
{

(a) kC2 −C1

(b) k′C2
(1)

0 ≤ k < k′ ≤ 1
Touch: The shaded portion of theCompoundis small,

and mutual reflection may be observed.

In some of the above cases, because precise modeling
of ambient light is difficult, we modeled the ambient light
as the attenuation of the direct light.

2.3 Partial Edge Profile

Since some of the above physical models have similar
loci, we modeled additional partial characteristics which
have enough power to discriminate all of the above phys-
ical models. Although those are powerful clues for dis-
crimination, we cannot always observe them.

Smooth shading: A smooth intensity change with al-
most the same hue, as shown in 3, is often apparent.
This can be used to distinguishOcclusionfrom charac-
teristics such asAlbedo.

Highlight/Shadow: A highlight portion can be ob-
served as an overshoot portion on a locus. Similarly, if
a small shadow portion is observed in the case ofCom-
poundor Touch, the corresponding portion of a locus is
an overshoot toward the origin of the RGB space.

Smooth and slow transition: Shadow boundaries are
usually unclear. This implies the smooth and slow tran-
sition between clusters. This feature is different from
the aboveSmooth shadingin the sense that hue could
change along the transition.
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Figure 4: Comparison betweenCompoundandTouch

Locus shift: Compoundand Touch cannot be clearly
discriminated with the models discussed in the previ-
ous section. In the case ofCompound, however, the
locus shifts to an imaginary line segment between one
of the cluster and the origin of the RGB space. In the
case ofTouch, this shift is rarely observed because of
mutual reflection.

3 Feature Extraction from Edges

To discriminate actual loci based on the above locus mod-
els, we use several features extracted from an edge point
sequence. First, edge points are detected by an ordi-
nary edge detection methods,e.g. Canny edge detector.
The edge points are tracked and stored as edge point se-
quences. Then, RGB values on the original image are re-
sampled along asampling probe, which is a line segment
located at every pre-determined interval on an edge point
sequence, and is parallel to gradient direction at the point.

3.1 Features on the whole

We define the features for parameterizing the characteris-
tics presented in 2.2. If an edge is one of the above mod-
els, the corresponding features are always expected.

Alignment of the clusters (F1): As shown in 5, con-
sider two line segmentsli and lj , which are between
the origin and the clustersCi andCj , respectively. The
orientation difference betweenli andlj is considered as
a parameter which shows the hue difference of the two
clusters. If the angle is smaller than the pre-determined
thresholdθth, this feature is considered to be present.

Linearity of transition (F2): To parameterize linear
transition between two clusters, the distance between
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Figure 5: Collinearity of two
clusters and the origin
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transition between two clus-
ters

each transitional pointp and the line segment (ld)
between two clusters,i.e. Ci and Cj , are calculated
as shown in 6. If the average distanced̄ is smaller
than the pre-determined thresholddth, this feature is
considered to be present.

Bending to the origin 1 (F3): To detect the bending
portion of a locus as shown in 7, we defined the close-
ness to three line segmentsli, lj , andld defined above.
First, consider transition pointspk andpk+1. The line
closest to the midpoint of these two points is considered
to get the segment length|pk+1−pk| as a score. Then,
by summing up the score by each transition point, we
get the score for each line. If the score ofli or lj is
larger than the score ofld, this feature is considered to
be present.

Third cluster (F4): If the shadow portion in theCom-
poundor Touchmodel is large enough, the bending por-
tion in a locus is often observed as other intermediate
cluster(s). If the following conditions are satisfied, the
fourth feature is considered to be present.
• The number of clusters is three or more.
• Feature F2 is observed for the clusters on both ends

of a locus.
• Feature F1 is observed between one of these clusters

and each of intermediate clusters.

3.2 Features on portion

Similarly to the above feature definitions, we defined fea-
tures on partial characteristics of a locus.

Distribution in a cluster (F5): If a cluster is of line-like
shape, the coefficient of determination tends to be large
for the first principal component axis. This feature is
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Figure 7: Bending to the origin

considered to be present if the first eigenvalue of the
variance-covariance matrix is large, and the coefficient
of determination is larger than the threshold.

Overshoot (F6): In order to detect Shadow/Highlight
features, the RGB values are projected onto one dimen-
sional profile in gray level, then the overshootsare ex-
tracted [6].

Slow and smooth transition (F7): The number of
points in transition between clusters are counted. If
the number is larger than the threshold, this feature is
considered to be present.

Bending to the origin 2 (F8): If the scores defined for
feature F4 have close values to each other, transition on
the locus stay apart from all the imaginary line segment
li, lj , andld. This strongly suggests inter-reflection be-
tween two faces. Ifsi/sj is close to 1, this feature is
treated as present.

4 Probabilistic Model

Any single feature defined above is not strong enough to
classify an actual edge profile into a single phenomenon,
since features are often blurred, degraded, or even elimi-
nated by noise. We use DS theory to integrate weak clues.

4.1 Basic Probability Assignment

Each feature supports a set of phenomena and does not
support the rest. For example, if F1 is observed, there
is large possibility thatRidgeor Shadowis present, and
small possibility of the feature detection errors which can-
not be of any help for discrimination. Considering this,
large basic probabilityms is assigned to the former, and
the rest(1−ms) is assigned toUncertain, that is a set of
all phenomena.

Table 1: Basic probability on each feature

F1 F2 F3
Phenomena1 0 1 0 1 0
Albedo A1/B1 A1/B1 A1/B1

Occlusion A1/B1 A1/B1 A1/B1

Shadow A1/B1 A1/B1

Ridge A1/B1 A1/B1

Touch A1/B1 A1/B1

Compound1 A1/B1 A1/B1

Compound2 B1 B1

Uncertain A2/B2 A2/B2 A2/B2 A2/B2 A1/B1 A2/B2

A1 0.8 0.8 0.7 0.5 1.0 0.6
A2 0.2 0.2 0.3 0.5 0.4
B1 0.8 0.8 0.8 0.6 1.0 0.8
B2 0.2 0.2 0.2 0.4 0.2

Ai: in the case of two clusters
Bi: in the case of three or more clusters
Ci: do not care the number of clusters
F6.1: Overshoot(upward) F6.2: Overshoot(downward)
Compound1: without shadow cluster, Compound2: with
shadow cluster
1: a feature is observed 0 : a feature is not observed

Since we need guidelines in determining the basic
probability values, we counted the coincidences of ob-
served features and the actual phenomena. Based on this
probability, we determine the basic probabilities as shown
in 1. Ai shows the basic probability assigned when only
two clusters are found, whileBi is the probability when
three or more clusters are found.

4.2 Combination

For the probability combination, we utilized the most ba-
sic scheme, shown in the following formula.

m(A) =

∑
Ai∩Bj=A m1(Ai)m2(Bj)

1−∑
Ai∩Bj=φ m1(Ai)m2(Bj)

(2)

After the basic probability combinations, we choose a
candidate or a set of candidates. We tried two methods
based on the following idea:
• A candidate or a set of candidates which has a large

lower probability should be chosen.
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• A phenomenon or a set of phenomena which have large
upper probability should be given priority in searching
for candidates.

Method1: The phenomenon or set of phenomena which
has the largest lower probability is chosen. The sets of
phenomena are pre-determined, and no further combi-
nations of phenomena will be tried.

Method2: Until the lower probability gets larger than
the threshold, the system tries to make larger sets of
phenomena.
1. The system setsn = 1, and registers each single

phenomenon as a candidate.
2. The system examines the newly registered sets of

phenomena. From these, it searches for a set of phe-
nomena which has the largest upper probability and
has the lower probability larger than the threshold. If
found, it return that set as the chosen candidate.

3. If nothing is found, then the system tries to make
larger sets of phenomena. First, it finds the set of
phenomena which has the largest upper probability.
Then, it makes any combinations between the set
of phenomena and any single phenomenon which is
not already included in the set. It then registers the
newly generated sets. If all sets of phenomena with
n elements are checked, goto step 4, otherwise goto
step 2.

4. The system setsn = n + 1, and goes to step 2.

In Method2, the results heavily depend on the thresh-
old for the lower probability. More specifically, if the
threshold is set smaller, the size of chosen set becomes
smaller, while the accuracy,i.e. the rate that the correct
phenomenon is included in the chosen set, is degraded.
On the other hand, if the threshold is set larger, we ob-
tain a larger set large possibility set. Since this trade-
off should be examined, the performance is measured by
changing the threshold.

5 Experiments

We applied our method to relatively simple indoor scenes,
two of which are shown in 8. First, edge points are ex-
tracted, and RGB values are re-sampled as mentioned in
3. The interval between the sampling probes was set to
30 pixels, and each probe was 30 pixels in length on both
side, totaling 60 pixels.

The performance was checked by the following four
experiments.
Experiment1: Features: F1–F4, Method: Method1, and

the candidates for the discrimination were chosen from
the four sets,{{Albedo, Occlusion}, {Shadow, Ridge},
{Touch, Compound1}, {Compound2}}.

Experiment2: Features: F1–F4, Method: Method2, and
the smallest sets for the discrimination were the same
as Experiment1.

Experiment3: Features: F1–F8, Method: Method1, and
the candidates for discrimination were individual phe-
nomena.

Experiment4: Features: F1–F8, Method: Method2, and
the smallest elements for discrimination were individ-
ual phenomena.

whereCompound1 isCompoundwithout shadow clusters,
andCompound2 is that with shadow clusters.

In the above Experiment1 and Experiment2, the units
for discrimination were not individual features, since fea-
tures from F1 through F4 do not have enough information
to narrow the candidates down to a single phenomenon.
On the other hand, it is potentially possible to discrimi-
nate individual phenomena if we use all of the features F1
through F8.

The results are shown from 2 through 5. These are com-
parisons with the ideal, manually determined, answers for
over 300 edge segments. More specifically, the rate that
the correct manually selected phenomenon is included in
the chosen set is shown. The performance changes ac-
cording to threshold value changes are also shown in these
tables. For 2-a, 2-b, and 2-c, the threshold value is set to
0.5, 0.7, and 0.9, respectively. The same can be said for
Experiment4. The average number of elements which the
chosen set has is shown in the bottom row of the tables.
As we can see in 2, around 90% accuracy is obtained for
Experiment1 and Experiment2. This is because the lower
probability always becomes large for a simple scene in
which most of the edges can be classified into the physi-
cal models defined in this research.

On the other hand, 4 shows the difficulties in discrim-
inating individual phenomena for even a simple scene.
This is mainly because features F5–F8 cannot always be
observed, and therefore sufficient information is not al-
ways obtained. Even in those cases, we can see Method2
improves the result, as shown in the column of Exper-
iment4 a–c. This shows that we can safely obtain a
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(a) Toy Blocks (b) Edge detection result (c) Indoor Scene (d) Edge detection result

Figure 8: Images for the experiments

Table 2: Accuracy for image (a) (Experiment 1, 2)
Phenomena Exp.1 Exp.2-a Exp.2-b Exp.2-c

Al/Occl 89% 94% 100% 100%
Sh/Ri 87% 87% 87% 91%
To/Co1 94% 94% 94% 94%
Co2 88% 88% 88% 100%

Average # 1 1.14 1.58 2.78

Table 3: Accuracy for image (c) (Experiment 1, 2)
Phenomena Exp.1 Exp.2-a Exp.2-b Exp.2-c

Al/Oc 61% 70% 94% 100%
Sh/Ri 92% 92% 92% 92%
To/Co1 53% 53% 73% 73%
Co2 100% 100% 100% 100%

Average # 1 1.35 1.76 3.30

Table 4: Accuracy for image (a)(Experiment 3, 4)
Phenomena Exp.3 Exp.4-a Exp.4-b Exp.4-c

Albedo 0% 100% 100% 100%
Occlusion 53% 69% 78% 95%
Shadow 50% 75% 90% 95%
Ridge 68% 79% 89% 89%
Touch 50% 50% 83% 100%
Compound1 100% 100% 100% 100%
Compound2 88% 88% 88% 88%

Average # 1 1.35 1.98 2.62

Table 5: Accuracy for image (c)(Experiment 3, 4)
Phenomena Exp.3 Exp.4-a Exp.4-b Exp.4-c

Albedo 0% 100% 100% 100%
Occlusion 18% 45% 59% 79%
Shadow 11% 56% 70% 85%
Ridge 60% 80% 96% 100%
Touch 29% 29% 57% 86%
Compound1 50% 50% 75% 75%
Compound2 100% 100% 100% 100%

Average # 1 1.75 2.24 2.47

set which has high probability by considering the non-
separable phenomena as a group. For a relatively compli-
cated scene, such as (c), although the accuracy is lower,
good results are achieved by Method2 as shown in 5.

6 Conclusion

In this paper, we proposed the color edge profile utiliza-
tion for object arrangement discrimination. We first in-
troduced several object arrangement models and locus
models in the RGB space. To discriminate them, we
defined several features, and used the evidence accumu-
lation scheme of DS theory. In our experiments, our
method showed good performances for relatively simple
scenes. For complicated scenes, there is a certain trade-
off concerning the accuracy and the number of candidates.

However, this can be improved by our candidate selection
method.
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