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Abstract scene analysis:

In this paper, we propose a method for classifying image edg’eét utilizes several physical object arrangement models.

caused by different physical phenomena, i.e. reflectance charfgé,t analy;es a lOCUS_ in the RGB space. )

shadow, occlusion, etc., by using color information around tife It €ffectively combines weak and ambiguous clues by
edge. We assumed several simple models for object spatial ar_Dempster-Shafer theory.

rangements. For each of them, typical locus of RGB values

along the normal direction of each edge segment is modeled. . .

Each locus is parameterized by several features. In the claszj- MOde“ng COlOf Edge Proflle

fication of actual edges, the most plausible phenomenon is se-

lected by checking the consistency between the parameters fom  Physical Edge Model

an actual edge profile and those from each model. For the im- . .
Intensity changes are usually caused by several typical

provement of accuracy, Dempster-Shafer probability model | enomena. Eor these phenomena. we consider six phvs
employed to deal with the above parameters that are often Wé)a ) P ! phy

: . ical models shown in 1.
and uncertain. Experiments showed good performances.
Albedo: The albedo changes across edges with no sub-

stantial depth discontinuity.
1 Introduction Occlusion: Two regions belong to different objects meet
at the edge. No substantial shadow exists between the

Intensity discontinuity is one of the most important fea- two objects. ,
tures in analyzing images. Especially color distributioré:hadowz Two regions belpng to one homogeneous re-
have extremely useful information for delineating object 910" 0N an object. One is a shadow region cast by an-
boundaries and for discriminating physical phenomenaPther object, and the other is directly illuminated by a
around edges. Although there has been limited researchOrmal light source. _
on this topic, there are a few related works. Kanade pfgidge: Two regions border at a ridge or a valley of an
posed a method for using edge profiles in making a pair oPPJECt. _ _
group of edges [1]. Marik, et. al, proposed edge discriff@mpound: Two objects overlap, one of the objects
ination based on color distribution [3]. Maxwell, et. al, casts a shadow on the other.
proposed a method to utilize an edge profile for imag@uch: Two regions belong to two objects touching or
segmentation [4, 5]. They proved the utility of gray or close to each other. Direct illumination is attenuated in
color distribution around an edge. the crack or gap.

We propose a novel method for using this informa- These phenomena are not always separable: for ex-
tion to discriminate physical phenomena around edgesathple, an intermediate phenomenon betw&aimchand
has the following advantages which enable more detail€dmpoundcan be imagined. To cope with this problem,



A:Albedo
O:Occlusion
S:Shadow
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uuuuuuuuu

. 8 8 8 B B 8%

. 8 B B ¥ ¥ 8%

Albedo or Shadow or Compound or
™ @ Occlusion () Ridge © Touch

!

Viewing Direction Lighting Directior

Figure 3: Smooth
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we use probability model in which a probability can be as- RGB value recovers quickly from the attenuated value
signed to a set of phenomena. This avoids the risk of over£C'5 to C5 (2(c)).

specifying the phenomenon without enough information. _ (a) kKCy — Cy
p = ’ 1)
(b) K'C2
2.2 Edge Profile in the RGB Space 0<k<k <1

L . Touch: The shaded portion of thEompounds small,
In the above model, the most intrinsic characteristics can, nd mutual reflection may be observed

be found in the intensity profile along an edge’s gradient.

First, we assume that the RGB value becomes gradualgln some of the above cases, because precise modeling

stable as a sampling point is getting apart from the edg gmbient Iight_ s difficult, we mpdeled the ambient light
Therefore, if we re-sample over enough length, we ¢ ﬁthe attenuation of the direct light.

expect at least two clusters at the start and the end of the

sample sequence. L€f; andC, be the representative2.3  Partial Edge Profile

RGB values,i.e. the cluster centers, on both sides. For

each model presented in the previous section, the idg4}ce some of the above physical models have similar
intensity changes can be modeled as follows: loci, we modeled additional partial characteristics which

Jgave enough power to discriminate all of the above phys-
shown in 2(a). The RGB valug of a locus point can |c§1I rnoqlels. Although those are powerful clues for dis-
be modeled as follows: crimination, we cannot always observe them.

p=kCi+(1—-k)Cy, 0<k<1 Smooth shading: A smooth intensity change with al-

Occlusion: The same as th&lbedocase except that the most the same hue, as shown in 3, is often apparent.
region on the occluding side often has smooth shadingThis can be used to distingui€kcclusionfrom charac-

Shadow: Two color clusters and the origin of the RGB teristics such adlbedo
space are aligned, since we assume the ambient liglighlight/'Shadow: A highlight portion can be ob-
can be modeled as the attenuation of the direct light asserved as an overshoot portion on a locus. Similarly, if

Albedo: Rapid transition from one cluster to the other

shown in 2(b). a small shadow portion is observed in the cas€ain-
C,2kCy, p=kKC, K<k<1 poundor Touch the corresponding portion of a locus is
Ridge: The same aShadowexcept that the edge is often an overshoot toward the origin of the RGB space.
accompanied by highlights. Smooth and slow transition: Shadow boundaries are

Compound: The locus is mainly composed of two parts. usually unclear. This implies the smooth and slow tran-
(a) The RGB value quickly changes from the cluster sition between clusters. This feature is different from
C on the occluding side tbC'; on the shaded part of the aboveSmooth shadingn the sense that hue could
the other sidei.e. the attenuated value @'». (b) The  change along the transition.
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Figure 4: Comparison betwe@ompoundandTouch  clusters and the origin

ters
Locus shift: Compoundand Touch cannot be clearly

dlscrlmm_ated vatr;] the mo%?ls d|scussr:ad in the Erev"each transitional poinp and the line segment,)
Ious sezt_lfon. n the case lqmpound owt()aver, "€ hetween two clusters,e. C; andCy, are calculated
ocus shifts to an 'maginary fine segment between o€ ¢ ohown in 6. If the average distandas smaller
of the cluster and the origin of the RGB space. In the

. i than the pre-determined threshalg,, this feature is
case ofTouch_thls shift is rarely observed because of considered to be present.
mutual reflection.

Bending to the origin 1 (F3): To detect the bending
portion of a locus as shown in 7, we defined the close-
ness to three line segmetitsl;, andl,; defined above.
First, consider transition poinjs, andp,_, . The line

L . closest to the midpoint of these two points is considered

To discriminate actual loci based on the above locus mod-

els, we use several features extracted from an edge poiri)% gseJr:]hrﬁirS]ge;g:;et?]telesr::%ti kg;_&f (’;J} ?rsai;ct:izrneb-(l)—i?]etn\,/ve

sequence. First, edge points are detected by an ordi{;et the score for each line. If the scorelofr L. is
. . J

nary edge d(_etectlon methoasg. Canny edge detectpr. larger than the score @f, this feature is considered to
The edge points are tracked and stored as edge point s%-e present
guences. Then, RGB values on the original image are Ji% ) L

. S : ird cluster (F4): If the shadow portion in th€om-
sampled along aampling probewhich is a line segment oundorTo(uch)modeI is large enoE h, the bending por-
located at every pre-determined interval on an edge poinF 9 9n. gp

sequence, and is parallel to gradient direction at the point.Ion in a locus is often_observe_d_ as other |nf[er_med|ate
cluster(s). If the following conditions are satisfied, the

fourth feature is considered to be present.
3.1 Features on the whole e The number of clusters is three or more.

We define the features for parameterizing the characteris® Feature F2 is observed for the clusters on both ends

tics presented in 2.2. If an edge is one of the above mod- of a locus. )
els, the corresponding features are always expected. e Feature F1 is observed between one of these clusters

and each of intermediate clusters.

3 Feature Extraction from Edges

Alignment of the clusters (F1): As shown in 5, con-
sider two line segments and/;, which are between
the origin and the clustelS; andC;, respectively. The 3.2 Features on portion
orientation difference betweépandi; is consideredas o ]

a parameter which shows the hue difference of the nagmilarly to the above feature definitions, we defined fea-
clusters. If the angle is smaller than the pre-determinBti€s on partial characteristics of a locus.
threshold,,, this feature is considered to be presentDistribution in a cluster (F5): If a cluster is of line-like

Linearity of transition (F2): To parameterize linear shape, the coefficient of determination tends to be large

transition between two clusters, the distance betweerfor the first principal component axis. This feature is
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Table 1: Basic probability on each feature

F1 F2 F3
Phenomenal 0 1 0 1 0
Albedo Al/Bl Al/Bl Al/Bl
Occlusion Al/BL Al/Bl Al/BL
Shadow Al/Bl Al/Bl
Figure 7: Bending to the origin Ridge A1/Bj A1/Bj
considered to be present if the first eigenvalue of thdouch A1/B) A1/B)
variance-covariance matrix is large, and the coefficienEompoundl A1/ By A1/By
of determination is larger than the threshold. Compound?2 By By
Overshoot (F6): In order to detect Shadow/Highlighy Uncertain | A>/By As/By Ax/By Ax/By A1/By Az/ By
features, the RGB values are projected onto one dimem; 08 | 0.8 0.7 |05 1.0 | 0.6
sional profile in gray level, then the overshootsare gxA, 0.2 0.2 0.3 0.5 0.4
tracted [6]. B, 08 | 0.8 08 | 0.6 1.0 | 0.8
Slow and smooth transition (F7): The number of | B, 0.2 | 0.2 02 |04 0.2

points in transition between clusters are counted. Af: in the case of two clusters
the number is larger than the threshold, this featurefs: in the case of three or more clusters
considered to be present. C;: do not care the number of clusters
Bending to the origin 2 (F8): If the scores defined for F6-1- Ove;sihoot(uhpwardz‘ 56'25 (l)vershoot((:downwarg)z "
feature F4 have close values to each other, transition g Poundl: without shadow cluster,  Compoundz: wit
the locus stay apart from all the imaginary line segmeS adow cluster
. - . 1"a feature is observed 0: a feature is not observed
l;, 1, andly. This strongly suggests inter-reflection be-
tween two faces. 1§;/s; is close to 1, this feature is

treated as present. Since we need guidelines in determining the basic

probability values, we counted the coincidences of ob-
T served features and the actual phenomena. Based on this
4 Probabilistic Model probability, we determine the basic probabilities as shown

in 1. A; shows the basic probability assigned when only

Any single feature defined above is not strong enOL‘ghtWo clusters are found, whil®; is the probability when
classify an actual edge profile into a single phenomen(ﬁqree or more clusters are found
since features are often blurred, degraded, or even elimi- '

nated by noise. We use DS theory to integrate weak clues.
4.2 Combination

4.1 Basic Probability Assignment For the probability combination, we utilized the most ba-

sic scheme, shown in the following formula.
Each feature supports a set of phenomena and does no? '
PP P > asnmy—a M (As)ma(B))

support the rest. For example, if F1 is observed, there  ;(4) = )

is large possibility thaRidgeor Shadowis present, and L= ainB,=¢ M1(Ai)ma(B;)

small possibility of the feature detection errors which can- After the basic probability combinations, we choose a
not be of any help for discrimination. Considering thigandidate or a set of candidates. We tried two methods
large basic probabilityn, is assigned to the former, andased on the following idea:

the rest(1 — m) is assigned t@ncertain that is a set of e A candidate or a set of candidates which has a large
all phenomena. lower probability should be chosen.




e A phenomenon or a set of phenomena which have largerhe performance was checked by the following four
upper probability should be given priority in searchingxperiments.
for candidates. Experimentl: Features: F1-F4, Method: Method1, and
Methodl: The phenomenon or set of phenomena whichthe candidates for the discrimination were chosen from
has the largest lower probability is chosen. The sets ofthe four sets{{Albedq Occlusior}, {ShadowRidge},
phenomena are pre-determined, and no further combi{ Touch Compound}, {Compoun@}}.
nations of phenomena will be tried. Experiment2: Features: F1-F4, Method: Method2, and
Method2: Until the lower probability gets larger than the smallest sets for the discrimination were the same
the threshold, the system tries to make larger sets oS Experimentl.

phenomena. Experiment3: Features: F1-F8, Method: Method1, and
1. The system sets = 1, and registers each single the candidates for discrimination were individual phe-
phenomenon as a candidate. nomena.

2. The system examines the newly registered setsEefPeriment4: Features: F1-F8, Method: Method2, and
phenomena. From these, it searches for a set of phethe smallest elements for discrimination were individ-
nomena which has the largest upper probability andgual phenomena.
has the lower probability larger than the threshold. YfhereCompound is Compoundvithout shadow clusters,
found, it return that set as the chosen candidate. andCompouna is that with shadow clusters.

3. If nothing is found, then the system tries to make In the above Experimentl and Experiment2, the units
larger sets of phenomena. First, it finds the set & discrimination were not individual features, since fea-
phenomena which has the largest upper probabilityres from F1 through F4 do not have enough information
Then, it makes any combinations between the detnarrow the candidates down to a single phenomenon.
of phenomena and any single phenomenon which@® the other hand, it is potentially possible to discrimi-
not already included in the set. It then registers tt@te individual phenomena if we use all of the features F1
newly generated sets. If all sets of phenomena wittrough F8.

n elements are checked, goto step 4, otherwise gotdl he results are shown from 2 through 5. These are com-
step 2. parisons with the ideal, manually determined, answers for

4. The system sets = n + 1, and goes to step 2. over 300 edge segments. More specifically, the rate that

In Method2, the results heavily depend on the thredhe correct manually selected phenomenon is included in
old for the lower probability. More specifically, if thetN® chosen set is shown. The performance changes ac-

threshold is set smaller, the size of chosen set becorfigiding to threshold value changes are also shown inthese
smaller, while the accuracye. the rate that the correcti@Ples. For 2-a, 2-b, and 2-c, the threshold value is set to

phenomenon is included in the chosen set, is degradgé® 0-7» @nd 0.9, respectively. The same can be said for

On the other hand, if the threshold is set larger, we ngberimenm. The average number of elements which the

tain a larger set large possibility set. Since this tradel0Sen set has is shown in the bottom row of the tables.

off should be examined, the performance is measuredyy We can see in 2, around 90% accuracy is obtained for
changing the threshold. Experimentl and Experiment2. This is because the lower

probability always becomes large for a simple scene in
which most of the edges can be classified into the physi-
5 Experiments cal models defined in this research.

On the other hand, 4 shows the difficulties in discrim-
We applied our method to relatively simple indoor scendsating individual phenomena for even a simple scene.
two of which are shown in 8. First, edge points are eXhis is mainly because features F5—F8 cannot always be
tracted, and RGB values are re-sampled as mentionedliserved, and therefore sufficient information is not al-
3. The interval between the sampling probes was setways obtained. Even in those cases, we can see Method2
30 pixels, and each probe was 30 pixels in length on bathproves the result, as shown in the column of Exper-
side, totaling 60 pixels. iment4 a—c. This shows that we can safely obtain a
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(a) Toy-/ Blocks (d) Edge detection result

(c) Indoor Scene
Figure 8: Images for the experiments
Table 2: Accuracy for image (a) (Experiment 1, 2) Table 3: Accuracy for image (c) (Experiment 1, 2)
| Phenomeng Exp.1 | Exp.2-a[ Exp.2-b [ Exp.2-c] | Phenomeng Exp.1[ Exp.2-a| Exp.2-b| Exp.2-c|
Al/Occl 89% 94% 100% 100% Al/Oc 61% 70% 94% 100%
Sh/RIi 87% 87% 87% 91% Sh/RIi 92% 92% 92% 92%
To/Col 94% 94% 94% 94% To/Col 53% 53% 73% 73%
Co2 88% 88% 88% 100% Co2 100% | 100% 100% 100%
[Average# | 1 | 114 [ 158 | 278 | [Average# [ 1 [ 135 | 176 | 330 |
Table 4: Accuracy for image (a)(Experiment 3, 4) Table 5: Accuracy for image (c)(Experiment 3, 4)
| Phenomena| Exp.3 | Exp.4-a| Exp.4-b [ Exp.4-c] | Phenomena| Exp.3 | Exp.4-a[ Exp.4-b [ Exp.4-c]
Albedo 0% 100% 100% 100% Albedo 0% 100% 100% 100%
Occlusion 53% 69% 78% 95% Occlusion 18% 45% 59% 79%
Shadow 50% 75% 90% 95% Shadow 11% 56% 70% 85%
Ridge 68% 79% 89% 89% Ridge 60% 80% 96% 100%
Touch 50% 50% 83% 100% Touch 29% 29% 57% 86%
Compoundl| 100% | 100% 100% 100% Compoundl| 50% 50% 75% 75%
Compound2| 88% 88% 88% 88% Compound2| 100% | 100% 100% 100%
[Average# | 1 [ 135 | 198 | 262 | [Average# | 1 [ 175 | 224 | 247 |

set which has high probability by considering the noidowever, this can be improved by our candidate selection
separable phenomena as a group. For a relatively compiethod.
cated scene, such as (c), although the accuracy is lower,
good results are achieved by Method2 as shown in 5.
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