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Abstract

In stereo algorithms with more than two cameras, the im-
provement of accuracy is often reported since they are ro-
bust against noise. However, another important aspect of
the polynocular stereo, that is the ability of occlusion de-
tection, has been paid less attention. We intensively an-
alyzed the occlusion in the camera matrix stereo (SEA)
and developed a simple but effective method to detect the
presence of occlusion and to eliminate its effect in the cor-
respondence search. By considering several statistics on
the occlusion and the accuracy in the SEA, we derived
a few base masks which represent occlusion patterns and
are effective for the detection of occlusion. Several experi-
ments using typical indoor scenes showed quite good per-
formance to obtain dense and accurate depth maps even at
the occluding boundaries of objects.

1 Introduction

Occlusion is one of the most difficult problems in stereo vi-
sion [3, 9, 13]. Especially in binocular case, when a target
point can not be seen at one of the cameras, the triangu-
lation is impossible. On the other hand, if more than two
cameras are used, the target points that are visible from
only one camera decrease as the number of cameras in-
creases. Also the false targets can be reduced by using
redundant information obtained by the third or successive
cameras. The improvement of accuracy by using trinocular
stereo has been reported in several papers [1, 8, 10, 14, 16].

The accuracy around occluding boundaries, however, is
not simply improved, since the target points invisible from
at least one camera may increase than the binocular case.
The reason for this is that most algorithms previously pro-
posed are not able to discriminate occlusion from noise.
To cope with this problem, we intensively analyzed the oc-
clusion in the camera matrix stereo SEA (Stereo by Eye
Array) proposed by ourselves, and developed a method to
discriminate the presence of occlusion from the presence of

noise. By considering several useful statistics, we derived
a few masks to represent occlusion patterns which are ef-
fective for the detection of occlusion. The experiments of
SEA with 3 × 3 camera matrix and5 × 5 camera matrix
showed quite good performance to obtain a dense and ac-
curate depth map even around occluding boundaries.

2 Detection of Occlusion

2.1 Occlusion in Stereo

The false matches in stereopsis are mainly caused by the
following two reasons.

(a) The evaluation of the correct disparity becomes worse
because of the presence of noise.

(b) The evaluation of the correct disparity becomes worse
because the correct corresponding points are invisible at
one or more cameras.

In binocular stereo, the discrimination between the
above two cases is basically impossible without global in-
formation. If more than two cameras are used in stereopsis,
the cases of (a) and (b) may be separable by using local
spatial relation of the evaluation values. This is mainly
because the occurrence of (b) is heavily dependent on the
location of cameras, but the occurrence of (a) is almost in-
dependent. If the presence of occlusion is detected, the
correct triangulation can be made by simply omitting the
cameras to which the target point is invisible.

Then the problem is how to represent the spatial depen-
dence of occlusion and how to utilize it in the correspon-
dence search. Before describing this, we show the frame-
work of SEA, the camera matrix stereo[11, 12].

2.2 SEA: Stereo by Eye Array

Coordinate System

Figure 1 illustrates the coordinate system of the camera
matrix. The origin of the scene coordinates is located at
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Figure 1: Geometry of SEA

the lens center of the center camera. Other cameras are
located at a grid on theX-Y plane at an equal interval of
b. The image captured by each camera inM × N matrix
is labeled asIm,n (m = −M−1

2 , · · · , 0, · · · , M−1
2 ; n =

−N−1
2 , · · · , 0, · · · , N−1

2 ).
The optical axes of all cameras are set to be parallel with

each other. The image coordinatesx-y of each camera are
set to be parallel to theX-Y axes of the scene coordinates.
All cameras have a same focal lengthf .

For simplification of description, we assume below that
the size of the camera matrix is3 × 3, i.e. nine cameras
are used. In this configuration, SEA uses eight stereo pairs
constructed between the center image and each of the eight
peripheral images. Target pointP (x, y, z) is observed on
the center imageI0,0 at image point

I0,0(f ·X/Z, f · Y/Z). (1)

When there is no occlusion,P is also observed on each
peripheral imageIk,l at image point

Ik,l(f · (X − kb)/Z, f · (Y − lb)/Z). (2)

Or we can denote them asI0,0(x, y), andIk,l(x−kd, y−
ld), wherex, y, andd are defined asx = f · X/Z, y =
f · Y/Z, d = f · b/Z, respectively.d is called disparity.

Basic Algorithm

At first, the dissimilarity valuesek,l(x, y, d) between
I0,0(x, y) andIk,l(x − kd, y − ld) are computed for each
stereo pair, assuming that the disparity isd. The dissim-
ilarity between two points is evaluated as the summation
of RGB distances within a small window whose center is
located at each of the two points. For eachd, ek,l(x, y, d)
are summed up to makee(x, y, d) as the penalty of the dis-
parityd.

e(x, y, d) =
∑

k,l

ek,l(x, y, d) (3)

The correct disparitŷd at I0,0(x, y) is estimated by choos-
ing a valued which satisfies the following equation:

d̂ = argmin
d

e(x, y, d) (4)

By using a number of image pairs similarly to the
multiple-baseline stereo [10, 17, 18], we can greatly re-
duce the false targets caused by false corresponding points
which unexpectedly indicate good similarity. This realizes
a dense disparity map with high spatial resolution.

Occlusion Detectable Algorithm

In SEA, simple extension to the basic algorithm realizes a
quite effective algorithm to cope with occlusion. We de-
fine “occlusion masks”, which are typical occlusion pat-
terns occurring in real scenes. In the following explana-
tion, the eight masks shown in Figure 2 are assumed as the
occlusion masks.

Each maskMt(k, l)(t = 1, 2, · · ·,8) represents a pat-
tern of occlusion depending on the orientation of occluding
boundary. The gray cell or white cell onMt(k, l) indicates
whether occlusion occurs or not between the image pair
I0,0 andIk,l; gray cell (the value is0) indicates that occlu-
sion occurs and white cell (the value is1) indicates not. By
omitting the imagesIk,l whose values inMt(k, l) are0,
the effect of occlusion can be eliminated. For this purpose,
we redefine the penaltye(x, y, d) in equation 3 by incor-
porating the assumption on occlusion. First, we define the
valueet(x, y, d) as the penalty of the disparityd with the
assumption on occlusion typet. The essential property of
this penalty is that it does not count for theek,l of the oc-
cluded imageIk,l.

et(x, y, d) =
wt

nt

∑

Mt(k,l)=1

ek,l(x, y, d) (5)

wherent indicates the number of1s in maskMt(k, l). wt

is a constant to give a certain bias to the selection process
that the non-occluding case is preferred if occlusion does
not occur. It is set to1 whent = 0 and set to a constant
slightly greater than1 whent 6= 0.

Thee(x, y, d) is redefined by selecting the minimum of
theet(x, y, d),

e(x, y, d) = min
t=0,1,···,8

et(x, y, d). (6)

Estimatingd̂ by using equation 4, the typet selected for
the estimated disparity in equation 6 indicates the presence
of occlusion and the direction of occluding boundary.

2.3 Criteria for the Determination of Occlu-
sion Masks

By detecting occlusions, it becomes possible to estimate
the correct disparities around the occluding boundaries.
This enables us to acquire the disparity maps with sharp
object boundaries. However, there still remains problems
concerning mask selection: what kinds of and how many
occlusion masks are required?
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Figure 4: Three scenes used in the experiments

In the followings, we investigate the optimal occlusion
mask sets for the camera matrix stereo. In determining a
set of occlusion masks, we have to consider several factors:

1. The number of occlusion masks should be small. In the
stereo matching algorithm in SEA, the computational
time is proportional to the number of masks.

2. The occlusion masks must be close toactual occlusion
patterns. In other words, actual occlusion patterns have
to be substituted by the occlusion masks.

3. The closenessbetween an occlusion mask and an actual
occlusion pattern should be considered in the context of
stereo matching. There is remarkable performance dif-
ference in the following two cases: (a) Regarding oc-
cluded viewing positions as visible in the penalty es-
timation by equation 6; (b) Regarding visible viewing
positions as occluded in the penalty estimation by equa-
tion 6. The accuracy deterioration caused by (a) is much
worse than that by (b). Hereafter, we call (a) asItoV
(regarding Invisible target as Visible), (b) asVtoI (re-
garding Visible target as Invisible).

4. To make use of the advantage of polynocular stereo,i.e.
robustness against noise, it is better to use as many im-
ages as possible. However, if we simply increase the
cells labeled visible in occlusion masks, the possibility

of ItoV may increase. There exists trade-off between the
robustness against noise and the applicability to actual
occlusion patterns.

To determine a set of mask satisfying the above crite-
ria we examined several statistics: concerning the second
and the third criterion, the occlusion patterns in real scenes
are observed; the accuracy degradation caused byItoV or
VtoI is measured concerning the third criterion; the accu-
racy degradation caused by reducing the number of cam-
eras is measured concerning the forth criterion.

3 Occlusion Patterns in SEA

To clarify the characteristics of the occlusion patterns in
actual scenes, let us consider the geometry of SEA. The
visibility of a target point in the SEA is determined by the
geometrical relation among that point, the viewing position
(i.e. the lens center of the camera) and the boundary of the
occluding object. This relation is illustrated in Figure 3(a).
If the point is visible from a camera, the viewing position
must be visible from the point. In the other words, if point
P is visible from pointQ, Q must be lit by a point light
source located atP.



Since the lens center of each camera is located on a grid
point on planeH, it is enough to consider the projection of
the object boundary onto the planeH. Figure 3(b) shows
this relationship. If the lens center of a camera is inside the
shadow cast by the occluding object, the pointP is invisible
from the camera. Therefore, the occlusion patterns in SEA
can be derived from the projected boundaries of objects in
real scenes by coarse sampling1.

The actual patterns and their probability of occurrence
are shown in Figure 5. They are measured by using the two
indoor scenes shown in Figure 42. In this measure, the pat-
terns which are different only by rotation are merged into
a single pattern. We can see that some occlusion patterns
have quite high probabilities compared to other patterns
with the same number of occluded viewing positions.

The occluded viewing positions cause large dissimilar-
ity values in the matching process. As mentioned before,
a large dissimilarity value may also be caused by noise. In
the case of noise, however, we can assume that their oc-
currence is random and the patterns with a same number of
viewing positions with large dissimilarity should have sim-
ilar probabilities. Then it will be reasonable to decide that
such a pattern shown in the left side of Figure 5 is caused
by occlusion, not by noise.

4 Conditions for Accuracy Degrada-
tion

4.1 Visible/Invisible Confusion

The effect of misjudgement on the visibility of view points
in disparity estimation is measured. The SEA algorithm
is applied only to the target points with occlusion. For
this statistics, three scenes as shown in Figure 4 are used.
The true depth map manually created for each scene is also
used.

Each figure in Table 1 shows the ratio of target points for
which SEA can estimate correct disparities under correct
visibility judgement but fails under one of the following
two cases.

1. Regarding an occluded viewing position as visible (ItoV
for a cell in the correct occluding pattern).

2. Regarding a visible viewing position as occluded (VtoI
for a cell in the correct occluding pattern).

1In complicated situations, more than one object may occlude a tar-
get point. So generally, the ‘logical-OR’ of multiple boundaries must be
considered as a projected boundary

2Since we manually created true disparity maps for three scenes as
shown in Figure 12, actual occlusion patterns can be automatically de-
tected from them. We collected every occlusion pattern around every oc-
cluding boundary.

Table 1: Accuracy degradation by visible/invisible confu-
sion

Each figure shows the accuracy degradation caused byVtoI or
ItoV in disparity estimation in3× 3 or 5× 5 stereo.

Scene1 Scene2 Scene3

VtoI/ItoV VtoI/ItoV VtoI/ItoV

3× 3 3.5/32 6.4/45 8.2/41 (%)

5× 5 0.74/11 1.4/15 1.4/16 (%)

We can observe that the effect byItoV is much serious
than that byVtoI. It should be avoided in the actual stereo
matching. Therefore, at most oneItoV is allowed in the
successive experiments. On the other hand, the accuracy
degradation caused byVtoI is small enough to be neglected
when theVtoI cells are few. We can also observe that the
ratio of degradation byItoV andVtoI is roughly 10:1.

4.2 Number of Views

The statistics in the previous section show thatItoV should
be kept as small as possible. However, an occlusion mask
with small number of cells labeled visible makes the stereo
matching less robust in the sense of noise tolerance.

To investigate this trade-off, we examined the relation
between the matching accuracy and the number of cam-
eras. For this purpose, only the target points which are
visible at all the cameras are processed to avoid the effect
of occlusion.

The number of cameras and their arrangements are
binocular, collinear trinocular[9], orthogonal trinocular[8],
pentanocular arranged in “+”, pentanocular arranged in
“×”, 3×3 camera matrix, and5×5 camera matrix. The re-
sult is shown in Table 2. The improvement of accuracy by
increasing the number of cameras almost saturates around
five cameras. This implies that when there is five cells la-
beled visible in an occlusion mask, it has no merit to try to
increase the number of visible cells under the risk ofItoV
confusion.

5 Occlusion Mask

5.1 Base Mask Pattern

The base mask pattern means the mask pattern with nor-
malized orientation and size. Actual occlusion masks can
be generated by rotating and resampling a base mask pat-
tern. The following two criteria will be reasonable to de-
termine the base mask patterns.
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Table 2: Relation between the number of cameras and the
matching accuracy

cameras 2 3 3 5 5 9 25

— L + x 3× 3 5× 5

Scene1 67 72 84 87 88 88 96 (%)

Scene2 59 64 74 79 80 83 84 (%)

Scene3 65 75 74 82 81 84 85 (%)

Mask1 Mask2 Mask3 Mask4

Figure 6: Base mask patterns

• According to the claim in Section 3, mask patterns
should fit the occluding boundaries projected onto lens
center plane. Therefore, the spatial frequency is usually
low for occlusion patterns to be considered in actual in-
door scenes.

• The invisible cells can replace the visible cells as far as
a mask has a certain number of visible cells. More than
five visible cells are almost redundant for the false tar-
get reduction. Too many visible cell may increase the
danger ofItoV confusion.

Considering the above criteria, we composed four base
mask patterns as shown in Figure 6. These patterns have
spatial frequency (1, 0), (1, 1), (3/2, 0), and (3/2, 1) in
vertical and horizontal directions. While the base masks
1 and 3 seems to be similar to the base pattern of DCT or
WH-Transform, their size is odd and the center of the mask
is always labeled visible.
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Figure 7: Base masks for3× 3 camera matrix
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Figure 8: Base masks for5× 5 camera matrix

5.2 Actual Mask Set

The base mask patterns projected onto3 × 3 mesh are
shown in Figure 7. Only the base mask1 has more than
five cells labeled visible. However, if we assume that
the disparity estimation using four visible cells is accurate
enough, the base mask1 may be substituted by the base
mask2. That is because all cells labeled invisible in base
mask1 are included in base mask2, base mask1 is substi-
tuted by base mask2 with twoVtoI allowing small increase
of error. The effectiveness of the rest two masks is doubt-
ful, since base mask3 has only three cells labeled visible,
and base mask4 has only two. The effectiveness will be
examined in the experiments in Section 6.

All of the rotational variations of a base mask are used
in the set of occlusion masks when the base mask is incor-
porated in the SEA algorithm.

The base mask patterns projected onto5 × 5 mesh are
shown in Figure 8. Base masks through 1 to 3 have more
than five cells labeled visible. So, base mask1 may be sub-
stituted by base mask2 with small degradation of matching.
Base mask4, however, does not have enough cells labeled
visible as in the3 × 3 case. There are 16 rotational vari-
ations for each of the base masks 1, 2, and 4, and eight
variations for base mask3.
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Figure 9: Coverage of base masks

5.3 Coverage of Base Mask

The coverage of the base mask set for the actual occlusion
patterns should be examined. For this purpose, we com-
pared the base masks and the occlusion patterns gathered
in the indoor scenes shown in Figure 4.

The method of comparison is as follows:
• For each size of camera matrix, base masks and actual

occlusion patterns are compared.
• The distance between a mask and an occlusion pattern is

counted by the number ofItoV andVtoI cells.
• The number ofItoV is allowed for at most one cell, since

the degradation byItoV is serious.
• The percentage of occlusion patterns within a certain

distance from at least one of the base masks is measured.
The result for3 × 3 camera matrix is shown in Fig-

ure 9. As shown in the figure, the base masks can cover the
majority of the occlusion patterns in real scenes. If base
masks 1–3 are used, the occlusion patterns within the dis-
tance(ItoV,VtoI) = (0, 3) from the base mask set occupy
about 90% out of all, and the patterns within the distance
(1, 2) occupy 97%.

By adding base mask4, the rate increases by a few per-
cent. However, the effectiveness of base mask4 should be
carefully examined, since the number of cells labeled vis-
ible is not large enough both in3 × 3 and5 × 5 camera
matrices. The answer to this question will be given by the
experiments in Section 6.

6 Experiments

The performance in disparity estimation of the occlusion
detectable algorithm in Section 2.2 is measured to verify
the effectiveness of the mask set obtained in the previous
section. The percentage is measured that the obtained dis-
parity is within one pixel of the true disparity manually
given. The results are summarized in Table 3. For all cases

with occlusion masks, we can observe the performance im-
provement compared to the case without occlusion masks.
Since scene3 is the most complex scene, in which leaves of
potted plants are occluding other leaves with similar colors,
the performance is lower than the others.

The obtained depth maps for the two scenes are shown
in Figure 10 and Figure 11, and the true depth maps manu-
ally created are shown in Figure 12 for comparison. Im-
provements in the depth estimation by using occlusion
masks can be observed anywhere. Sharp depth discontinu-
ities are obtained at occluding boundaries around the desk
lamp and the face mask in scene1, and around the contour
of the doll in scene2. Of course, the improvements are dif-
ferent among the results obtained by using different sets of
occlusion masks. For example, at the arm of the desk lamp
in scene1, the result by base mask2 is better than that by
base mask1. This tendency can also be seen in the perfor-
mance rate in Table 3.

Generally speaking, the use of the occlusion masks de-
rived from base mask2 without any additional masks brings
us the best or the near best performance. The reason can be
conjectured that the ratio of cells labeled visible or invisi-
ble in base mask2 is well balanced. As a result, they are ro-
bust against noise as well as they cover wide variety of oc-
clusion patterns. On the contrary, occlusion masks derived
from base mask3 and base mask4 are effective only in such
a case as scene3 where quite complicated occlusion occurs.
As we can see in Table 3, the performance improvement
for scene1 and scene2 is small and even degradation is ob-
served. The reason is clear. Since their cells labeled visible
are not enough for noise elimination, the false targets have
increased. Then not only the performance around occlud-
ing boundaries but also the performance at the part without
occlusion is affected.

7 Conclusion

In this paper, a method for detecting and eliminating oc-
clusion in polynocular stereo was presented. Base masks
for the camera matrix stereo are designed as they can sub-
stitute the actual occlusion patterns in real scenes. For this
purpose, several statistics are examined to clarify the crite-
ria for determining the occlusion masks. By applying the
occlusion masks to disparity estimation in SEA, drastic im-
provements were observed around occluding boundaries.
The experiments showed that the occlusion masks derived
from base mask2 always brings us the best or the near best
performance for the typical indoor scenes.



Table 3: Score by using automatic occlusion detection
Each value shows the rate of correct disparity obtained for each combination of a mask set and scene. The three values are express the
rates for “whole image / targets without occlusion / targets with occlusion”. For comparison, the performance is measured in the ideal
case where the actual occlusion patterns are directly given as the occlusion masks. It is given at the row labeled “Actual”.

Scene1(3x3) Scene2(3x3) Scene3(3x3) Scene1(5x5) Scene2(5x5) Scene3(5x5)

No Mask 92.7/98.3/44.8 88.7/95.3/28.1 72.9/94.3/36.1 92.2/99.6/61.6 90.1/98.0/53.6 71.3/95.6/42.3

Mask1 95.2/98.4/67.8 93.2/95.3/73.6 76.3/94.7/44.8 95.1/99.5/77.1 95.2/97.9/82.6 73.9/95.8/47.9

Mask2 95.7/98.4/72.7 93.9/95.2/82.0 78.5/94.6/51.0 96.1/99.5/81.9 96.6/97.8/90.8 74.9/95.8/50.0

Mask2, 3 95.7/98.3/72.7 93.9/95.2/82.0 80.5/94.3/56.8 96.2/99.6/82.0 96.6/97.8/90.8 76.1/95.3/53.3

Mask1–3 95.7/98.3/73.3 93.9/95.2/82.1 80.8/94.4/57.3 96.1/99.5/81.9 96.6/97.8/91.1 76.4/95.5/53.7

Mask1–4 95.7/98.3/73.3 93.8/95.1/82.2 83.6/94.3/65.1 96.1/99.5/82.0 96.5/97.7/90.8 82.5/95.3/67.4

Actual 96.6/98.3/82.3 94.1/95.4/81.3 84.0/94.3/66.5 98.2/99.6/92.3 97.2/98.0/93.3 84.3/95.6/70.9

(a) True depth map for scene1

(c) True depth map for scene2

Figure 12: True depth maps for scene1 and scene2
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