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Abstract. It is a great challenge to map network processing tasks to
processing resources of advanced network processors, which are hetero-
geneous and multi-threading multiprocessor System-on-Chip. This paper
proposes a novel scheduling algorithm, called Replication-based Partial
Dynamic Scheduling (RPDS). It aims to improve the NP performance by
combining the strategies of partial dynamic mapping and task replication
with a 2-phase scheduling. RPDS differs from existing solutions in several
aspects, e.g., the processing elements are heterogeneous, fully-connected,
and multi-threading, the application is decomposed into directed acyclic
graph tasks with continuous data-packets, and scheduling is conducted
at both of initialization and run-time. Experimental results showed our
algorithm could increase the largest average throughput by about 30%
than those without dynamic phase replication.

Keywords: scheduling, network processors, task replication, partial
dynamic scheduling, directed acyclic graph.

1 Introduction

The Internet has evolved from a simple store-and-forward network to a complex
communication infrastructure. In order to meet demands on security, flexibility
and performance of increasingly complex network services, network traffic not
only needs to be forwarded, but processed on network devices such as routers.
The programmable on-Chip Multi-Processors (CMP) called network processors
(NPs) hence appeared. One of the difficulties of application development on
such kind of hardware platform is to handle processing resources scheduling.
And it also has some other restricts and requirements such as strong real-time,
high throughput, low power, small instruction space, changing traffic load, etc.,
which make it a great challenge to solve this problem.

Scheduling of processing resources is basically to decide which task should be
processed on given processing resource at a given time, to achieve the optimal
goal. Within NPs, this problem is concretely the mapping from tasks to process-
ing elements (PEs). The tasks are relatively independent code blocks which are
decomposed from network applications by using two main methods, i.e. pipelin-
ing and directed acyclic graph (DAG).
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The optimizing problem of mapping tasks to PEs is NP-complete [1]. So the
practical goal is to get the approximate optimal result. Manual mapping is inef-
fective and fallible when the system architecture and application are complex [2],
and previous research on automatic mapping did not consider the characteristics
of advanced NPs.

According to weakest-link principle, the performance of the whole system
relies on a few bottlenecks. So we can improve the system performance by abating
them. When a task is identified to be a bottleneck, there are usually two solving
methods, one is deepening the pipeline, which can’t be changed after software
compilation, the other is duplicating the task executable code to let it occupy
more processing resources at the time of execution. If the bottleneck of a system
is changing, the method of task replication can efficiently track the changes and
abate the bottleneck.

Therefore, to map network processing tasks to processing resources of ad-
vanced complex network processors, this paper proposes a novel scheduling al-
gorithm, called Replication-based Partial Dynamic Scheduling (RPDS). It com-
bines the strategies of partial dynamic mapping and task replication together
in NP scheduling that aims to improve the network processing performance in
terms of throughput and delay.

The rest of this paper is organized as follows. In Sect. 2, we describe related
work in NP scheduling and highlight the distinctive aspects of our approach. In
Sect. 3, the details of problem formalization, processing models, and algorithm
procedure are proposed. Section 4 presents the evaluation method, simulation
tool and experimental results. Finally, Sect. 5 concludes the paper.

2 Related Work

Previous research of mapping tasks to PEs on NPs mainly utilized linear pro-
gramming and heuristic algorithms, e.g., list scheduling, randomized mapping,
and genetic algorithms. In linear programming method, the mapping problem is
transformed to a linear programming problem to handled through greedy heuris-
tic [3] or randomized rounding [4]. The list scheduling sorts all tasks according
to their priorities and chooses a PE for each task based on a particular rule.
Ramaswamy et al. [5] use “criticality” as task priority. Wolf et al. [6] propose
two predictive scheduling algorithms, LAP and EFQ, both of which are in nature
based on list scheduling. The basic idea of randomized mapping is to randomly
choose a valid mapping and evaluate its performance and repeat this process
certain times. [7] and [8] present randomized mapping algorithms with different
models for performance evaluation. Genetic algorithm maintains a population of
candidate solutions that evolves over time and ultimately converges. Yan et al.
[2] generate the initial population by utilizing Monte Carlo method. However,
the above algorithms made a lot of assumptions and simplifications:

– Assumptions of PE architecture. PEs are supposed to be homogeneous,
i.e., execution time of a task processed on different PEs are the same; PEs
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are supposed to be linked as pipelining; PEs are supposed not to contain
hardware multi-threads. Actually these assumptions are not true in advanced
NPs’ hardware architecture.

– Simplification of task partition. Existing algorithms usually choose
pipelining tasks, i.e., except the beginning task and the ending task, each
task has and only has one predecessor and one successor. This method can
not take full advantage of parallelism of NPs. Describing the network appli-
cation with DAG is more natural. It reflects characteristics of classification,
synchronization, and parallelism of data-packets processing.

– Simplification of scheduling trigger. Scheduling occasions can be classi-
fied into static scheduling, dynamic scheduling, and partial dynamic schedul-
ing [9]. Partial dynamic scheduling is the trade-off of the former two, in which
partial tasks are assigned off-line, and others at run-time. It has low compu-
tation cost and can achieve local optimal solution at least.

Our work differs from and perhaps outperforms previous work in several as-
pects. First, the NP platform is different. We use the advanced hardware archi-
tecture, which is heterogeneous, fully-connected, and multi-threading. Second,
we adopt partial dynamic mapping, which has been rarely studied in existing
NP scheduling. Third, although the strategy of task replication has been deeply
studied in cluster systems in the context of scientific computing [10], the task
model is very different from ours. Furthermore, we are the first to combine task
replication and partial dynamic mapping in NP scheduling.

3 RPDS Algorithm

3.1 Problem Formalization

The scheduling problem is expressed by 5-tuple as following:

Π = (G, D, P , Θ, Ω) . (1)

G = (T , E) is the dependent relationship graph of tasks, which is usually a
DAG. It takes elements in T as nodes, and elements in E as directed edges. T =
{T1, T2, . . . , Tm} is the set of tasks partitioned from the application. 〈Ti, Tj〉 ∈
E (i, j = 1, 2, . . . , m) denotes that Tj is processed after Ti, and there is data
transferring from Ti to Tj .

D = {D1, D2, . . . , Dl} describes the characteristics of data-packets being
processed, such as arrival time and which type of process is needed. Di =
〈ti, Gi〉 (i = 1, 2, . . . , l), ti is the arrival time of the packet, and Gi is a sub-graph
of G, i.e., the packet needs to be processed by partial or all of the tasks.

P = {P1, P2, . . . , Pn} is the set of PEs in the system. Each PE can load several
tasks with each one costs time tl. Each PE has r hardware multi-threads. Every
two PEs can communicate directly with the delay of time tc, and communicating
delays of inner-PE are ignored.

Θ is an m × n matrix. An element of it θij denotes the execution time of the
task Ti on the PE Pj (i = 1, 2, . . . , m; j = 1, 2, . . . , n).
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Ω is an m × n matrix. An element of it ωij denotes the number of the task
Ti on the PE Pj(i = 1, 2, . . . , m; j = 1, 2, . . . , n).

The scheduling problem of DAG network processing tasks to heterogeneous
multiprocessors is, given input G, D, P , Θ, to get output Ω and achieve the
optimal goal of the system.

3.2 Processing Model

We present the abstract models for network device and processing. Two defini-
tions are presented at first:

Definition 1. Di.RET , the remaining execution time of data-packet Di.

Definition 2. Di.RCT , the remaining communication time of data-packet Di.

Task Model. We assume that the application has been decomposed to T appro-
priately, and m < n×r, i.e., the number of tasks is less then the total number of
threads. One node may have multiple successors, which means the application
has conditional branches. For example, the sub-graphs of G are G1, G2, . . . , G7,
which represent the processing paths of all types of data-packets (see Fig. 1).

Thread Model. Each thread has its own data buffer. When multiple packets
arrive, they are organized as a FIFO queue in the buffer (see Fig. 2).There are
four states, unoccupied, blocked, running, and ready, of a thread, which can be
transited from one to another in a certain condition.

Fig. 1. An example of sub-graphs
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Fig. 2. The architecture of thread buffer

State Model of PEs. The load state of the PE Pk can be busy, normal, or idle.
For a period of detecting time td, the summation time when Pk is running is te.
Then the utilization rate of this PE is:

Pk.UR =
te
td

. (2)

Given load upper limit λ1 and load lower limit λ2, if Pk.UR � λ1, Pk is busy;
if Pk.UR < λ2, Pk is idle; Pk is normal when Pk.UR falls between λ1 and λ2.
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Communicating and Processing Model. For modern processor, communicating is
independent with processing. RCT of all data-packets in the buffer minus 1 till
0 after every time unit; RET of the first data-packet in the queue minus 1 till 0
after every time unit if its RCT is 0, while RET of other data-packets remain
unchanged; if Di.RET and Di.RCT are both 0, the data-packet Di is finished
on this task, and is passed to the tail of successor task queue, resets Di.RET as
θjk (Tj is the successor task, and Pk is the processor that Tj is loaded), Di.RCT
as tc (different PE) or 0 (the same PE). For a particular task Tj, the buffer of
corresponding thread contains data-packets D1, D2, . . . , Ds. We define Tj .EEF
as the earliest expected finish time of Tj:

Tj.EEF =
s∑

i=1

(Di.RET + Di.RCT ) . (3)

The value of EEF implies how busy the task is. For all tasks at the moment,
the task whose EEF value is the biggest is the bottleneck task.

3.3 Algorithm Procedure

Cost function is used to measure the fitness of mapping results, which is the key
of list scheduling algorithm. To take into account execution time, load balance
and communication overhead, the cost function is defined as follows:

F = a×
n∑

j=1

m∑

i=1

ωijθij+b× 1
n

n∑

j=1

(
m∑

i=1

ωijθij −
∑n

j=1
∑m

i=1 ωijθij

n

)2

+c×
m∑

j=1

j∑

i=1

βijtc .

(4)

where βij = 1, if (〈Ti, Tj〉 ∈ E & ∀k, ωik × ωjk = 0) ; or 0, else. The every addend
respectively means the linear sum of all execution time, the variance of the exe-
cution time of every PE, and the linear sum of all communication delay. a, b, c
are corresponding weights. The main procedure of RPDS algorithm is described
as follows:

– Static phase scheduling. At the initialization of NPs, all tasks are orga-
nized as an ordering list. First, calculating the difference between the shortest
execution time and the hypo-shortest execution time of each task, the larger
the difference is, the higher the task priority is. Then for the task with the
highest priority in the list, a PE among those contain unoccupied threads is
selected to make the value of cost function F minimal, to which the task is
allocated. This process is repeated until all tasks are assigned. At the end of
this step the result Ω0 is obtained. As long as the number of tasks m is less
than the total number of threads n × r, each task can occupy a correspond-
ing thread. Apparently there are some redundant unoccupied threads after
static phase scheduling, which will be fully utilized at the next phase.

– Dynamic phase scheduling. During the run-time of NPs, the PEs’ states
are detected every td time. If all PEs are busy, it’s unable to adjust, and if
all PEs are idle, it’s unnecessary to adjust. Therefore when there are some
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busy PEs and some idle PEs, the bottleneck task found in busy PEs are
duplicated. For each idle PE, the value of cost function F is calculated when
the bottleneck task replication is loaded on it, and the PE that makes F the
minimal is finally chosen. If all threads on the idle PE is occupied, the task
whose EEF is 0 is removed. The pseudo code is given in Fig. 3.

Input: G, Θ, Ω0, time, Pk.UR, Tj .EEF (k = 1, 2, . . . , n, j = 1, 2, . . . , m)
Output: Ωtime

1: While td|time & ∃Pk.UR � λ1 & Pk.UR < λ2

2: Tbottleneck ← Tj : max{Tj .EEF}
3: For each Pk.UR < λ2

4: If all threads in Pk are occupied
5: If ∃Tj .EEF = 0 /∈ Ω0 in Pk

6: remove Tj

7: Else
8: continue
9: load Tbottleneck
10: calculate Fk

11: If more than one Fk

12: Pchosen ← Pk : min{Fk}
13: Pk except Pchosen roll back //remain not changed
14: Return Ωtime

15: End While

Fig. 3. The pseudo code of dynamic phase scheduling

4 Performance Evaluation

4.1 Evaluation Metrics

We use average delay and average throughput as metrics to evaluate the algo-
rithm. For each data-packet Di, its arrival time is Di.treceive, and its finished
time is Di.tfinish, then the delay of this data-packet is Di.Delay = Di.tfinish −
Di.treceive. The average delay and throughput of l data-packets is:

Average Delay =
1
l

l∑

i=1

Di.Delay . (5)

Average Throughput =
l

Dl.tfinish − D1.tfinish
. (6)

These metrics can work only if G, D, P , and Θ are the same.

4.2 Simulation Tool

We developed a simulation tool called dbma, which implemented the processing
model presented in Sect. 3.2. The input was a configuration file in which the
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task graph (G), packets sending sequence (D), PEs (P ), execution times (Θ),
and other parameter values were specified. The outputs included the arrival and
finished time of all data-packets (treceive, tfinish), the earliest expected finish
time of all tasks at each detecting time (EEF ), the utilization rates of all PEs
at each detecting time (UR), and all mapping results ever have (Ω). Uniform
virtual time unit was used in simulation.

Specially, to specify Di = 〈ti, Gi〉 for every data-packet separately is time-
consuming because there are thousands of packets in the experiment. For ti, we
assumed that the packet sending intervals follow the exponential distribution.
For Gi, we added probabilities of data-packets transferred from Ti to Tj. The
execution time ranged from 0 to 100, whereas 0 means that the task is not
executable on that PE.

4.3 Experimental Results

The choice of parameters is important to the experiments. We used some pa-
rameters as default (see Table 1, and varied others to observe their effect to
performance.

(1) Sending Data-Packets at Constant Speed. The DAG in this experiment is
presented in Fig. 1, where m = 4, n = 4, r = 3. The default branch probability is
1. The execution time of each task is shown in Table 2. To verify the performance
of RPDS, we implemented several variations (i.e., different types) of it, which
are presented in Table 3.

Table 1. Default parameters

Parameter tc tl td λ1 λ2 a b c

Value 10 20 500 0.9 0.7 0.5 0.1 0.4

Table 2. Execution time

P1 P2 P3 P4

T1 86 57 68 85
T2 29 61 52 18
T3 0 53 16 68
T4 94 6 15 86

Table 3. RPDS algorithm variations

Schedule Have Allow
Type Multi-DAGs at dynamic synonymous
ID static phase phase tasks in one PE
2 No Yes No
4 No No No
6 Yes Yes No
8 Yes No No
10 No Yes Yes

Sending data-packets at the constant speed every time unit respectively (e.g.,
0.01 denotes that the average sending interval is 100 time units), the results are
shown in Fig. 4 and Fig. 5.

We can observe that the average delay and average throughput are both in-
creasing along with the increase of the constant speed. The performance of RPDS
variations ranks as: Type-10 > Type-2 > Type-6 > Type-8 > Type-4. Let the
delay bound be 1500, we can see that the throughput rate (throughput / send-
ing speed) keeps 1. If exceeding this bound, the throughputs do not increase
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Fig. 4. Packet speed vs. delay

 

Fig. 5. Packet speed vs. throughput

any more but have trends to decrease. When the packet sending speed is lower
than 0.017, the five variations are grouped into two classes: Type-2, Type-4, and
Type-10 vs. Type-6 and Type-8. The average delays of the former are about
50% lower than those of the latter. But as the speed increasing, the two classes
turn to be: Type-2, Type-6, and Type-10 vs. Type-4 and Type-8. The largest
acceptable speeds of the former are 30% larger than those of the latter.

That is to say, when the workload is light, scheduling without static repli-
cation is superior to that with static replication; while the workload is heavy,
scheduling with dynamic replication performs better than that without dynamic
replication. The reason is that there is no need to duplicate at light workload,
and furthermore the delay is increased after replication because of the frequent
transferring between PEs of data-packets. Dynamic replication abated the pres-
sure of the bottleneck task effectively at heavy workload, balanced the tasks
among PEs, and therefore increased the throughput.

(2) Sending Data-Packets at Variable Speed or Probabilities. In this experiment,
the DAG, execution time, and algorithm types are the same as those in experi-
ment (1). The packet sending speed and branch probabilities are different, which
are shown in Table 4.

Table 4. Packet sending speed; Branch probabilities of T1 → T2/T1 → T3

Time 0–10000 10000–20000 20000–30000 30000–40000 40000-50000
Speed 0.017 0.0185 0.0195 0.0235 0.026
Time 0–15000 15000–30000 30000-

Probability 0.4/0.4 0.1/0.9 0.9/0.1

We selected Type-10 (with dynamic replication) and Type-8 (without dynamic
replication) to compare with each other. The results are shown in Fig. 6 and
Fig. 7.

This experiment shows the reason why RPDS can reduce the delay and im-
prove the throughput in more detail. The delay of packets in Type-10 algorithm
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Fig. 6. Different speed vs. delay

 

Fig. 7. Different probabilities vs. delay

reaches a small peak after changes of traffic characters (speed or probabilities),
and turns to be smooth soon. But for Type-8, the delay changes dramatically
according to the changes of traffic(see Fig. 8 and Fig. 9). It is obvious that the
detection and adaptation of RPDS contribute to the performance.

 

Fig. 8. Utilization rates of PEs

 

Fig. 9. EEF of tasks

5 Conclusions

The Replication-Based Partial Dynamic Scheduling (RPDS) is proposed in this
paper. It tries to solve the problem of processing resources scheduling on the
heterogeneous, fully-connected, and multi-threading NP hardware architecture.
The main idea of RPDS algorithm is two-phase scheduling: static phase and
dynamic phase. The static phase scheduling performs task pre-assignment before
processing data-packets. It guarantees that each task could hold the minimal
processing resources and keep the cost lowest. The dynamic phase scheduling
occurs during the processing data-packets. When busy PEs and idle PEs coexist,
the bottleneck task will be duplicated to the idle PE which makes the lowest
cost. The future work includes the theoretic verification of RPDS, update of
dbma, and experiments to the default parameters, etc.
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