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Abstract: 
The overabundance of DTV (Digital Television) 

programs precipitates a need for smart “filters” to help people 
obtain programs that they really like. In this paper, we 
propose an adaptive program filtering system, which is 
designed to assist users by adapting to their personal 
preferences. We firstly provide architecture of the program 
filtering system. Secondly, we present the user profile and 
program feature representation model and similarity 
measurement using vector space model. Thirdly, we describe 
the user profile learning algorithm based on relevance 
feedback. For user profile learning, we first put forward a 
primary learning algorithm. With several issues in further 
consideration, we then present the improved learning 
algorithm, which is more reasonable and comprehensive than 
the primary one. Finally, we present the performance 
evaluation on the prototype of the system.  
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1 Introduction 

Digital television (DTV) and the rapid growth of 
communication technologies have created an 
overabundance of programs from which each consumer can 
choose. This precipitates a need for smart “filters” to help 
people obtain personalized programs.  

To meet this new requirements, the TV-Anytime 
Forum, a global association of organizations that seeks to 
develop specifications to enable audio-visual and other 
services based on mass-market high volume digital storage, 
has defined specifications that will enable applications to 
exploit local persistent storage in consumer electronics 
platforms [1]. A typical simple TV-Anytime system can be 
viewed as containing three major elements: a service 
provider delivering the TV-Anytime service, a transport 
provider that carries the service and a piece of equipment in 
the home that stores the content and plays it back at the 
consumer’s request [2]. 

In the TV-Anytime context, the central element is a 

new generation of consumer electronic equipment called 
Personal Digital Recorder (PDR). PDR is a kind of 
personal digital media storage device that is widely 
expected to become an extremely popular consumer 
electronic device for DTV in the near future.   

The rapid development of PDR enables consumers to 
store large quantities of rich multimedia content for their 
personal use. TV-Anytime in turn provides new 
opportunities for content and service providers to offer 
large amounts of personalized multimedia for the benefit of 
consumers. In a word, TV-Anytime and PDR make new 
solutions providing adaptive and personalized services 
possible. Therefore, this paper proposes an adaptive 
program filtering system in the TV-Anytime environment, 
which is designed to assist users by adapting to their 
personal preferences. 

The rest of this paper is organized as follows. Section 
2 provides the architecture of the filtering system. Section 3 
presents the analysis and design of VSM based feature 
representation and similarity measurement method. Section 
4 presents user profile learning algorithm based on 
relevance feedback. Section 5 describes performance 
evaluation on the prototype of the system. Finally, Section 
6 summarizes the conclusions of this paper. 

2 System Design 

Figure 1 shows the architecture of our adaptive 
program filtering system. There are three main elements: 
filter engine, profile learning, and user profile. The filter 
engine filters the incoming live program broadcast to PDR, 
only recording the program that the system thinks the user 
would like. The profile learning is responsible to update the 
user’s profile according to his/her viewing history. User 
profile is the program preferences or interests of individual 
user. 

When a program arrives, the filter engine will 
determine whether to record on the basis of preference 
information from the user profile. The filtering scheme is 
presented in Section 3. The user profile can be learned 
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automatically by the system through machine learning 
algorithm presented in Section 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. System conceptual diagram 

3 Feature Representation and Similarity 
Measurement Using Vector Space Model 

3.1 Feature Representation 

We take VSM [3] as the feature extraction and object 
information presentation method. In the VSM, we identify 
an object by a set of terms. Weights are assigned to terms as 
important indications. If  distinct terms are available 
for content identification, the content C can be conceptually 
represented as a m-dimensional vector, C=( ), 

where  is the weight assigned to the i-th term. 

m

mww ,...1

iw
To compute the vector representation of an object, 

usually these steps are followed [4]. First the individual 
words occurring in the object are identified. Words that 
belong to the stop list, which is a list of high-frequency 
words with low content discriminating power, like “a”, are 
deleted. Then a stemming routine is applied to reduce each 
remaining word to word-stem form, that is, the remaining 
words are reduced to their stem by removing prefixes and 
suffixes. For instance the words “computer”, “computers”, 
“computing” and “computability” could all be reduced to 
“comput”. For each remaining word stem (a term), a weight 
is assigned in an attempt to represent how “important” that 
term is. This is used for decreasing redundancy. 

In the user’s profile, there may be a lot of terms, 
which indicate the user’s interests. The terms have weights 
and orders respectively. We can define each term as a 
3-tuple (term, weight, order). Hence a profile can be 
represented as a vector of these 3-tuples, if there are  
distinct terms in the profile, and then it will be represented 

as a vector like this: 

m

)),,(),...,2,,(),1,,(( 2211 mwtwtwtP mm=      (1) 
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where  is a term,  is the weight of term ,  

is the order of  in the profile. The weights and orders 
describe the relative importance of the terms in the profile. 
Assuming there is a user who has 7 terms (with weight and 
order) in his/her profile. The user profile is represented as: 

it iw it i

it

P=((Romance, 4.25, 1) (Vivien Leigh, 3.16, 2) (Titanic, 
2.41, 3), (Hero, 1.80, 4), (Love, 1.44, 5), (Church, 1.28, 6), 
(Marriage, 1.12, 7)) 

For computational reasons, we can take the top  
highest weighted terms to represent the user’s preference. 
So the user’s profile can be conceptually represented as the 
following vector: 

n

),...,1( nwwP =                (3) 

where  is the weight of term  in the profile. 
Supposing 

iw it
6=n , then the profile example can be 

represented as:  
)28.1,44.1,80.1,41.2,16.3,25.4(=P  

Similarly, content can be also represented as a vector 
with  items, which are the same as those in the profile 
vector, that is term  in the profile vector and content 
vector are the same: 

n
it

),...,( 1 nuuC =                (4) 

where  is the weight assigned to term . Since 
terms are not all equally important for program 
representation, for instance, terms in Actors field may be 
more important than those in the Keywords field, important 
factors are assigned to the terms in proportion to their 
presumed importance for program identification. The 
weight  is assigned complying with this rule: if term 

 is included in the Title, Genre or Actor field of the 

program’s metadata, then =2, if  is included in the 

Keywords field, then =1, otherwise =0. For example, 
in metadata of the film: “Gone with the Wind”, the Genre is 
“Romance”, the Actor includes “Vivien Leigh”, and the 
Keywords includes “Love”. So the film can be represented 
as: 

iu it

iu

it

iu it

iu iu
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3.2 Similarity Measurement 

In the typical vector space representation, we can 
measure the degree of similarity between a program-profile 
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pair on the weights of the corresponding terms. A distance 
metric that measures the proximity of vectors to each other 
is defined over the space. After research, we decide to use 
the classical cosine similarity measure to compute the 
similarity between program and profile representations. 
Given the program  and the profile 

, the cosine similarity can be calculated as 
follows: 
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Consider the program  and the 
profile , their cosine 
similarity can be calculated as: 
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In the context of filter engine, if the calculated 
similarity is above the preset threshold θ  (such as 0.4), 
we consider that the program is relevant to the user’s 
profile; in other words, the user is likely interested in the 
program. Then the filter engine will record the program for 
the user. 

4 User Profile Learning with Relevance 
FeedbackGenerally, there are two ways to learn and 

update the user’s preference knowledge: (1) learn the user’s 
preference knowledge according to his/her implicit 
feedback; (2) learn the user’s preference knowledge 
according to his/her explicit feedback. We think the second 
method does not suit our system. Because in a PDR context 
it is inconvenient for the user to give explicit feedbacks to 
the DTV content they are viewing. After all, the original 
motivation and one major advantage of PDR is that with 
the intelligent assistant resident in the PDR, the user gets a 
more smooth and personalized viewing experience. 
Therefore we adopt the first method: learn the user’s 
preference knowledge according to his/her implicit 
feedback. 

There exist a variety of machine learning methods that 
can be used for learning a user profile. We adopt the 
relevance feedback method because it is both efficient and 
effective. Relevance feedback [5] was introduced originally 
for information retrieval. In relevance feedback method, 
users provide feedback to the system about the data items 
that they have been sent. The system then uses this 
feedback to adjust the user’s profile. 

In our system, when the user has watched a program 
for a period of time, then switched to another one. The 

user’s profile will be refined and revised based on the 
feedback received. This is done through the modification of 
the preference terms and their weights respectively.  

4.1 The Primary Learning Algorithm 

The primary algorithm is depicted as follows: 
For those terms already present in the profile, the 

term-weights are modified in proportion to the feedback.  
)(ifww ii ××+=′ βα              (6) 
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where ′
iw  is the weight of term  after the 

feedback, as well as  is the weight of term  before 
the feedback. 

it

iw it
α  is the learning rate which indicates the 

sensitivity of the profile to user feedback. If the user think 
the feedback is very important and wants the profile 
learning to be fast, then α  can be set larger, other wise 
α  can be set smaller. β  is the ratio of user’s real 
watching time ( ) to the program’s total duration time 
( ). 

rT

tT β  can be considered as the user’s evaluation to the 
program which he/she has viewed.  reflects the 
influence of the order of the term in user’s viewing history 
to the weight update process. The more important terms 
with larger weight reasonably have more influence on the 
profile learning. So  should decrease with increasing 
order of the term. In the expression of ,  is the 
order of term  in the user’s profile;  is the 
maximum of , in other words, it is the total number of 
terms in the user’s profile. For instance, if  is the 2-th 
term in the profile, which holds 10 terms totally, then 
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Terms not existing in the profile are handled as 
follows: 

Firstly, calculate the term’s weight 
)(ifiw ××= βα           (9) 

here  is the weight of the new term , iw it α  and 

β  have the same meanings as above. Since term  is 
not in the profile before, so  can’t be calculated as 
above, we define it as a default value 

it
)(if

ε  (such as 0.1). 
Secondly, if the calculated  is higher than a preset 

threshold 
iw

λ  (such as 0.05), we will add it to the user’s 
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profile, otherwise discard it, because it is too trivial.  

4.2 The Improved Learning Algorithm 

Usually the user will only watch what he/she likes 
unless he/she accidentally switches to something he/she 
does not like. We should eliminate these accidental 
switches’ impact on user profile learning. Generally, these 
accidental wrong switches can be filtered from the user’s 
viewing history by a TST (Trashy Switch Time). This TST 
is a threshold value, for example, we can set TST = 2s, and 
therefore all those viewing pieces in the user’s viewing 
history which has a viewing time less that TST will be 
considered as accidental wrong switches. Through TST 
those accidental wrong switches can be filtered from the 
user’s viewing history.  

However, to different contents, TST has different 
significance. For example, 2s is long for an advertisement 
lasting 5s, but it is very short for a film lasting 2 hours. So 
the ratio of user’s real watching time to the content’s total 

duration time is significant. We assume that if 
t

r
T
T  is 

larger than a threshold µ  (such as 0.01), the user really 
likes the content; otherwise, the user dislikes it.  

Another thing needing further consideration is the 
expression of . Since top terms may have more 
influence on preference revision, while last terms have little 
impact. So  should differ markedly for the top terms, 
and differ slightly for the last terms. The descending of 

 should reflect this. In the primary learning algorithm, 
 is a linear decreasing function, which decreases at the 

same speed. The curve of the linear decaying  is 
shown in Figure 2. In order to get different decreasing 
speed, we adopt exponential decay mode to construct . 
The curve of the exponential decaying  is shown in 
Figure 3. In this curve,  decreases rapidly at the 
beginning, with  increasing, it decreases gently. 
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Figure 3: Exponential decaying  )(if
 
With above analysis, we improve the primary 

algorithm as follows (in following equations, ′
iw , , iw α , 

β , , , , and  have the same meanings as 
those in the primary learning algorithm.):  

rT tT i maxI

If  < TST then , that is not to update the 
user preference, because the user’s switch is an accidental 
switch. 

rT ii ww =′

If   TST and rT ≥
t

r
T
T   ≥ µ , which means the user 

really likes the program, then for those terms already 
present in the profile, the term-weights are modified 
according to the following equations.  
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Terms not existing in the profile are handled as 
follows: 

Firstly, calculate the term’s weight,  is defined as 
a default value 

)(if
ε . 

)(ifiw ××= βα                (13) 
Secondly, if the calculated  is higher than a preset 

threshold 
iw

λ , we will add it to the user’s profile, otherwise 
discard it. 

If   TST and rT ≥
t

r
T
T  < µ , which means the user 

dislikes the program, then for those terms already present in 
the profile, the term-weights are modified according to the 

maxI
1 
 Linear decaying (f

maxI
 )i
following equations. 
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Terms not existing in the profile are handled as 
follows: 

Firstly, calculate the term’s weight,  is defined as 
a default value 

)(if
ε . 

)(ifiw ××−= βα               (17) 
Secondly, if the absolute value of calculated  is 

higher than a preset threshold 
iw

λ  (that is, λ>iw ), we will 
add it to the user’s profile, otherwise discard it. 

According to the improved learning algorithm, when 
the user has watched the film “Gone with the Wind” for 
160 minutes (whose total time is 180 minutes), then 
switched to another program, and finally the weight of Love 
in his/her profile is revised as follows (supposing 5.0=α , 

=10): maxI

57.2
180
1605.041.2)3( 510

5
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5 Evaluation 

From the user’s point of view, filtering effectiveness is 
very important. There are two criterions for evaluating 
filtering effectiveness, which are precision and recall. In 
general, precision can be used as a measure of the ability of 
our system to present only relevant programs. 

%100Pr ×=
recordedprogramsofnumbertotal

recordedprogramsrelevantofnumberecision  

Recall can be used as a measure of the ability of our 
system to present all relevant programs. 

%100Re ×=
collectioninprogramsrelevantofnumber

recordedprogramsrelevantofnumbercall  

Figure 4 shows the results of our experiment. The 
figure consists of two graphs. One is the experimental 
result employing the primary learning algorithm; the other 
is the experimental result employing the improved learning 
algorithm.  Each graph is a plot of precision versus recall. 
In the figure, PLA denotes Primary Learning Algorithm, 
while ILA denotes Improved Learning Algorithm. 

Comparing the results of the two learning algorithms, 
we can see that the improved learning algorithm is superior 
to the primary learning algorithm. This can be seen from 
that the improved learning algorithm’s curve is closer to the 
upper right-hand corner of the graph (where recall and 
precision are maximized). The reason is that the improved 
learning algorithm is more reasonable and comprehensive 
by filtering user’s accidental wrong switches, judging 

user’s likes and dislikes on 
t

r
T
T , and varying the decreasing 

speed of . )(if

Figure 4: Recall-precision graph 
1.0

0.8

6 Conclusions 

In this paper, we propose an adaptive program filtering 
system in the TV-Anytime environment, which is based on 
vector space model and relevance feedback. The system is 
designed to assist users by adapting to their personal 
preferences. We have made performance evaluation on the 
prototype of the system. The experimental results are 
encouraging, which show the system proposed here is 
useful to consumers. With this tool, when a user sits down 
to watch TV there are always some interesting programs to 
watch in the PDR. 

Some improvements of the current prototype are under 
way. First, we will implement adaptive size of user profile. 
This can be done by adjusting the value of threshold λ  
(see the details in Section 4) through the system running. It 
is in fact a problem of tradeoff between storage space and 
accuracy. Another improvement is to optimize the 
preference learning algorithm. We believe these challenges 
will require more substantial thinking in our system. 
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