
Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, 2-5 November 2003

ADAPTIVE PROGRAM FILTERING UNDER VECTOR SPACE MODEL AND
RELEVANCE FEEDBACK

ZHI-WEN YU, XING-SHE ZHOU, JIAN-HUA GU, XIAO-JUN WU

Department of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an, 710072, P.R.China
E-MAIL: yuzhiwen77@sina.com

Abstract:
The overabundance of DTV (Digital Television)

programs precipitates a need for smart “filters” to help people
obtain programs that they really like. In this paper, we
propose an adaptive program filtering system, which is
designed to assist users by adapting to their personal
preferences. We firstly provide architecture of the program
filtering system. Secondly, we present the user profile and
program feature representation model and similarity
measurement using vector space model. Thirdly, we describe
the user profile learning algorithm based on relevance
feedback. For user profile learning, we first put forward a
primary learning algorithm. With several issues in further
consideration, we then present the improved learning
algorithm, which is more reasonable and comprehensive than
the primary one. Finally, we present the performance
evaluation on the prototype of the system.

Keywords:
Program; Filtering; User profile; Vector space model;

Relevance feedback

1 Introduction

Digital television (DTV) and the rapid growth of
communication technologies have created an
overabundance of programs from which each consumer can
choose. This precipitates a need for smart “filters” to help
people obtain personalized programs.

To meet this new requirements, the TV-Anytime
Forum, a global association of organizations that seeks to
develop specifications to enable audio-visual and other
services based on mass-market high volume digital storage,
has defined specifications that will enable applications to
exploit local persistent storage in consumer electronics
platforms [1]. A typical simple TV-Anytime system can be
viewed as containing three major elements: a service
provider delivering the TV-Anytime service, a transport
provider that carries the service and a piece of equipment in
the home that stores the content and plays it back at the
consumer’s request [2].

In the TV-Anytime context, the central element is a

new generation of consumer electronic equipment called
Personal Digital Recorder (PDR). PDR is a kind of
personal digital media storage device that is widely
expected to become an extremely popular consumer
electronic device for DTV in the near future.

The rapid development of PDR enables consumers to
store large quantities of rich multimedia content for their
personal use. TV-Anytime in turn provides new
opportunities for content and service providers to offer
large amounts of personalized multimedia for the benefit of
consumers. In a word, TV-Anytime and PDR make new
solutions providing adaptive and personalized services
possible. Therefore, this paper proposes an adaptive
program filtering system in the TV-Anytime environment,
which is designed to assist users by adapting to their
personal preferences.

The rest of this paper is organized as follows. Section
2 provides the architecture of the filtering system. Section 3
presents the analysis and design of VSM based feature
representation and similarity measurement method. Section
4 presents user profile learning algorithm based on
relevance feedback. Section 5 describes performance
evaluation on the prototype of the system. Finally, Section
6 summarizes the conclusions of this paper.

2 System Design

Figure 1 shows the architecture of our adaptive
program filtering system. There are three main elements:
filter engine, profile learning, and user profile. The filter
engine filters the incoming live program broadcast to PDR,
only recording the program that the system thinks the user
would like. The profile learning is responsible to update the
user’s profile according to his/her viewing history. User
profile is the program preferences or interests of individual
user.

When a program arrives, the filter engine will
determine whether to record on the basis of preference
information from the user profile. The filtering scheme is
presented in Section 3. The user profile can be learned

0-7803-7865-2/03/$17.00 ©2003 IEEE
490

Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, 2-5 November 2003

automatically by the system through machine learning
algorithm presented in Section 4.

Figure 1. System conceptual diagram

3 Feature Representation and Similarity
Measurement Using Vector Space Model

3.1 Feature Representation

We take VSM [3] as the feature extraction and object
information presentation method. In the VSM, we identify
an object by a set of terms. Weights are assigned to terms as
important indications. If distinct terms are available
for content identification, the content C can be conceptually
represented as a m-dimensional vector, C=(),

where is the weight assigned to the i-th term.

m

mww ,...1

iw
To compute the vector representation of an object,

usually these steps are followed [4]. First the individual
words occurring in the object are identified. Words that
belong to the stop list, which is a list of high-frequency
words with low content discriminating power, like “a”, are
deleted. Then a stemming routine is applied to reduce each
remaining word to word-stem form, that is, the remaining
words are reduced to their stem by removing prefixes and
suffixes. For instance the words “computer”, “computers”,
“computing” and “computability” could all be reduced to
“comput”. For each remaining word stem (a term), a weight
is assigned in an attempt to represent how “important” that
term is. This is used for decreasing redundancy.

In the user’s profile, there may be a lot of terms,
which indicate the user’s interests. The terms have weights
and orders respectively. We can define each term as a
3-tuple (term, weight, order). Hence a profile can be
represented as a vector of these 3-tuples, if there are
distinct terms in the profile, and then it will be represented

as a vector like this:

m

)),,(),...,2,,(),1,,((2211 mwtwtwtP mm= (1)
)1(1 miww ii ≤≤≥ + (2)

where is a term, is the weight of term ,

is the order of in the profile. The weights and orders
describe the relative importance of the terms in the profile.
Assuming there is a user who has 7 terms (with weight and
order) in his/her profile. The user profile is represented as:

it iw it i

it

P=((Romance, 4.25, 1) (Vivien Leigh, 3.16, 2) (Titanic,
2.41, 3), (Hero, 1.80, 4), (Love, 1.44, 5), (Church, 1.28, 6),
(Marriage, 1.12, 7))

For computational reasons, we can take the top
highest weighted terms to represent the user’s preference.
So the user’s profile can be conceptually represented as the
following vector:

n

),...,1(nwwP = (3)

where is the weight of term in the profile.
Supposing

iw it
6=n , then the profile example can be

represented as:
)28.1,44.1,80.1,41.2,16.3,25.4(=P

Similarly, content can be also represented as a vector
with items, which are the same as those in the profile
vector, that is term in the profile vector and content
vector are the same:

n
it

),...,(1 nuuC = (4)

where is the weight assigned to term . Since
terms are not all equally important for program
representation, for instance, terms in Actors field may be
more important than those in the Keywords field, important
factors are assigned to the terms in proportion to their
presumed importance for program identification. The
weight is assigned complying with this rule: if term

 is included in the Title, Genre or Actor field of the

program’s metadata, then =2, if is included in the

Keywords field, then =1, otherwise =0. For example,
in metadata of the film: “Gone with the Wind”, the Genre is
“Romance”, the Actor includes “Vivien Leigh”, and the
Keywords includes “Love”. So the film can be represented
as:

iu it

iu

it

iu it

iu iu

)0,1,0,0,2,2(=C

3.2 Similarity Measurement

In the typical vector space representation, we can
measure the degree of similarity between a program-profile

Filter
Engine Program

Source
Local
Storage

User
Profile User

Program Flow
Feedback
Profile Information

Profile
Learning

491

Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, 2-5 November 2003

pair on the weights of the corresponding terms. A distance
metric that measures the proximity of vectors to each other
is defined over the space. After research, we decide to use
the classical cosine similarity measure to compute the
similarity between program and profile representations.
Given the program and the profile

, the cosine similarity can be calculated as
follows:

),...,(1 nuuC =

),...,(1 nwwP =

∑ ∑

∑

− =

==
×
×

=
n

i

n

i
ii

n

i
ii

wu

wu

PC
PCPCsim

1 1

22

1
||||||||

),((5)

Consider the program and the
profile , their cosine
similarity can be calculated as:

)0,1,0,0,2,2(=C
)28.1,44.1,80.1,41.2,16.3,25.4(=P

85.0
)2122)(228.1244.1280.1241.216.3225.4(

144.1216.3225.4),(
222

=
+++++++

×+×+×
=PCsim

In the context of filter engine, if the calculated
similarity is above the preset threshold θ (such as 0.4),
we consider that the program is relevant to the user’s
profile; in other words, the user is likely interested in the
program. Then the filter engine will record the program for
the user.

4 User Profile Learning with Relevance
FeedbackGenerally, there are two ways to learn and

update the user’s preference knowledge: (1) learn the user’s
preference knowledge according to his/her implicit
feedback; (2) learn the user’s preference knowledge
according to his/her explicit feedback. We think the second
method does not suit our system. Because in a PDR context
it is inconvenient for the user to give explicit feedbacks to
the DTV content they are viewing. After all, the original
motivation and one major advantage of PDR is that with
the intelligent assistant resident in the PDR, the user gets a
more smooth and personalized viewing experience.
Therefore we adopt the first method: learn the user’s
preference knowledge according to his/her implicit
feedback.

There exist a variety of machine learning methods that
can be used for learning a user profile. We adopt the
relevance feedback method because it is both efficient and
effective. Relevance feedback [5] was introduced originally
for information retrieval. In relevance feedback method,
users provide feedback to the system about the data items
that they have been sent. The system then uses this
feedback to adjust the user’s profile.

In our system, when the user has watched a program
for a period of time, then switched to another one. The

user’s profile will be refined and revised based on the
feedback received. This is done through the modification of
the preference terms and their weights respectively.

4.1 The Primary Learning Algorithm

The primary algorithm is depicted as follows:
For those terms already present in the profile, the

term-weights are modified in proportion to the feedback.
)(ifww ii ××+=′ βα (6)

t

r
T
T

=β]1,0[∈ (7)

max
max

max 1)(Ii
I

iI
if ≤≤

−
= (8)

where ′
iw is the weight of term after the

feedback, as well as is the weight of term before
the feedback.

it

iw it
α is the learning rate which indicates the

sensitivity of the profile to user feedback. If the user think
the feedback is very important and wants the profile
learning to be fast, then α can be set larger, other wise
α can be set smaller. β is the ratio of user’s real
watching time () to the program’s total duration time
().

rT

tT β can be considered as the user’s evaluation to the
program which he/she has viewed. reflects the
influence of the order of the term in user’s viewing history
to the weight update process. The more important terms
with larger weight reasonably have more influence on the
profile learning. So should decrease with increasing
order of the term. In the expression of , is the
order of term in the user’s profile; is the
maximum of , in other words, it is the total number of
terms in the user’s profile. For instance, if is the 2-th
term in the profile, which holds 10 terms totally, then

)(if

)(if
)(if i

it maxI

i
it

8.0
10

210)2()(=
−

== fif .

Terms not existing in the profile are handled as
follows:

Firstly, calculate the term’s weight
)(ifiw ××= βα (9)

here is the weight of the new term , iw it α and

β have the same meanings as above. Since term is
not in the profile before, so can’t be calculated as
above, we define it as a default value

it
)(if

ε (such as 0.1).
Secondly, if the calculated is higher than a preset

threshold
iw

λ (such as 0.05), we will add it to the user’s

492

Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, 2-5 November 2003

profile, otherwise discard it, because it is too trivial.

4.2 The Improved Learning Algorithm

Usually the user will only watch what he/she likes
unless he/she accidentally switches to something he/she
does not like. We should eliminate these accidental
switches’ impact on user profile learning. Generally, these
accidental wrong switches can be filtered from the user’s
viewing history by a TST (Trashy Switch Time). This TST
is a threshold value, for example, we can set TST = 2s, and
therefore all those viewing pieces in the user’s viewing
history which has a viewing time less that TST will be
considered as accidental wrong switches. Through TST
those accidental wrong switches can be filtered from the
user’s viewing history.

However, to different contents, TST has different
significance. For example, 2s is long for an advertisement
lasting 5s, but it is very short for a film lasting 2 hours. So
the ratio of user’s real watching time to the content’s total

duration time is significant. We assume that if
t

r
T
T is

larger than a threshold µ (such as 0.01), the user really
likes the content; otherwise, the user dislikes it.

Another thing needing further consideration is the
expression of . Since top terms may have more
influence on preference revision, while last terms have little
impact. So should differ markedly for the top terms,
and differ slightly for the last terms. The descending of

 should reflect this. In the primary learning algorithm,
 is a linear decreasing function, which decreases at the

same speed. The curve of the linear decaying is
shown in Figure 2. In order to get different decreasing
speed, we adopt exponential decay mode to construct .
The curve of the exponential decaying is shown in
Figure 3. In this curve, decreases rapidly at the
beginning, with increasing, it decreases gently.

)(if

)(if

)(if
)(if

)(if

)(if
)(if

)(if
i

)(if

1

i

0

Figure 2:

)(if

1

i
0

Figure 3: Exponential decaying)(if

With above analysis, we improve the primary

algorithm as follows (in following equations, ′
iw , , iw α ,

β , , , , and have the same meanings as
those in the primary learning algorithm.):

rT tT i maxI

If < TST then , that is not to update the
user preference, because the user’s switch is an accidental
switch.

rT ii ww =′

If TST and rT ≥
t

r
T
T ≥ µ , which means the user

really likes the program, then for those terms already
present in the profile, the term-weights are modified
according to the following equations.

)(ifww ii ××+=′ βα (10)

t

r
T
T

=β]1,0[∈ (11)

⎪⎩

⎪
⎨
⎧

=
<≤= −

−

max

max
0

1)(max

Ii
Iieif iI

i

 (12)

Terms not existing in the profile are handled as
follows:

Firstly, calculate the term’s weight, is defined as
a default value

)(if
ε .

)(ifiw ××= βα (13)
Secondly, if the calculated is higher than a preset

threshold
iw

λ , we will add it to the user’s profile, otherwise
discard it.

If TST and rT ≥
t

r
T
T < µ , which means the user

dislikes the program, then for those terms already present in
the profile, the term-weights are modified according to the

maxI
1
 Linear decaying (f

maxI
)i
following equations.

)(ifww ii ××−=′ βα (14)
493
1

Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, 2-5 November 2003

t

r
T
T

=β]1,0[∈ (15)

⎪⎩

⎪
⎨

⎧

=
<≤= −

−

max

max
0

1)(max

Ii
Iieif iI

i

 (16)

Terms not existing in the profile are handled as
follows:

Firstly, calculate the term’s weight, is defined as
a default value

)(if
ε .

)(ifiw ××−= βα (17)
Secondly, if the absolute value of calculated is

higher than a preset threshold
iw

λ (that is, λ>iw), we will
add it to the user’s profile, otherwise discard it.

According to the improved learning algorithm, when
the user has watched the film “Gone with the Wind” for
160 minutes (whose total time is 180 minutes), then
switched to another program, and finally the weight of Love
in his/her profile is revised as follows (supposing 5.0=α ,

=10): maxI

57.2
180
1605.041.2)3(510

5

=××+=××+=′ −
−

efLoveWLoveW βα

5 Evaluation

From the user’s point of view, filtering effectiveness is
very important. There are two criterions for evaluating
filtering effectiveness, which are precision and recall. In
general, precision can be used as a measure of the ability of
our system to present only relevant programs.

%100Pr ×=
recordedprogramsofnumbertotal

recordedprogramsrelevantofnumberecision

Recall can be used as a measure of the ability of our
system to present all relevant programs.

%100Re ×=
collectioninprogramsrelevantofnumber

recordedprogramsrelevantofnumbercall

Figure 4 shows the results of our experiment. The
figure consists of two graphs. One is the experimental
result employing the primary learning algorithm; the other
is the experimental result employing the improved learning
algorithm. Each graph is a plot of precision versus recall.
In the figure, PLA denotes Primary Learning Algorithm,
while ILA denotes Improved Learning Algorithm.

Comparing the results of the two learning algorithms,
we can see that the improved learning algorithm is superior
to the primary learning algorithm. This can be seen from
that the improved learning algorithm’s curve is closer to the
upper right-hand corner of the graph (where recall and
precision are maximized). The reason is that the improved
learning algorithm is more reasonable and comprehensive
by filtering user’s accidental wrong switches, judging

user’s likes and dislikes on
t

r
T
T , and varying the decreasing

speed of .)(if

Figure 4: Recall-precision graph
1.0

0.8

6 Conclusions

In this paper, we propose an adaptive program filtering
system in the TV-Anytime environment, which is based on
vector space model and relevance feedback. The system is
designed to assist users by adapting to their personal
preferences. We have made performance evaluation on the
prototype of the system. The experimental results are
encouraging, which show the system proposed here is
useful to consumers. With this tool, when a user sits down
to watch TV there are always some interesting programs to
watch in the PDR.

Some improvements of the current prototype are under
way. First, we will implement adaptive size of user profile.
This can be done by adjusting the value of threshold λ
(see the details in Section 4) through the system running. It
is in fact a problem of tradeoff between storage space and
accuracy. Another improvement is to optimize the
preference learning algorithm. We believe these challenges
will require more substantial thinking in our system.

Acknowledgements

This paper is supported by the National Natural
Science Foundation of China (60073054).

References

Recal

Pr
ec

is
io

n

0 0.4 0.6 0.8 1.0

0.2

0.4

ILA PLA

0.6

0.2

494

Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi’an, 2-5 November 2003

[1] TV-Anytime Environment Requirements Document,
TV035r6, TV-Anytime Forum, Aug. 2000

[2] TV-Anytime System Requirements Document,
TV036r2, TV-Anytime Forum, Apr. 2000

[3] G. Salton. “Automatic Text Processing: The
transformation, analysis, and retrieval of information
by computer”. Addison-Wesley, Reading,
Massachusetts, USA, 1989.

[4] Tak W Yan and Hector Garcia-Molina. “Index
Structures for Information Filtering Under the Vector
Space Model”, In Proceedings of the Tenth
International Conference on Data Engineering,
Houston, USA, 1994

[5] P W Foltz and S T Dumais. “Personalized information
delivery: An analysis of information filtering
methods”. Communications of the ACM, 1992

[6] Yu Zhiwen, Zhou Xingshe, Wu Xiaojun, Gu Jianhua.
“A Hybrid Filter for Program Personalization”. In
Proceedings of the 4th IEEE International Conference
on Information Technology: Computers and
Communications (ITCC2003), PP645-649, USA,
2003.

495

	Introduction
	System Design
	Feature Representation and Similarity Measurement Using Vect
	Feature Representation
	Similarity Measurement

	User Profile Learning with Relevance FeedbackG
	The Primary Learning Algorithm
	The Improved Learning Algorithm

	Evaluation
	Conclusions
	Acknowledgements

