
J. Ma et al. (Eds.): UIC 2006, LNCS 4159, pp. 1069 – 1079, 2006.
© Springer-Verlag Berlin Heidelberg 2006

UPmP: A Component-Based Configurable Software
Platform for Ubiquitous Personalized Multimedia

Services

Zhiwen Yu1,2, Xingshe Zhou2, Changde Li2, Shoji Kajita1, and Kenji Mase1

1 Information Technology Center, Nagoya University, Japan
zhiwen@itc.nagoya-u.ac.jp, kajita@nagoya-u.jp, mase@nagoya-u.jp

2 School of Computer Science, Northwestern Polytechnical University, P.R. China
zhouxs@nwpu.edu.cn, changde_lee@126.com

Abstract. As multimedia contents are becoming widely used in ubiquitous
computing environments among many application fields, e.g. educational
content management, entertainment, and live surveillance, the demand of
personalized access to these contents has increased dramatically. Delivering
ubiquitous personalized multimedia services (UPMSs) is a challenging task,
which relies on many different functions. In this work, we propose a three-layer
software platform, called UPmP to support efficient development and
deployment of UPMSs. It fulfills the core functions for UPMS including service
management, multimedia recommendation, adaptation, and delivery. We adopt
component-oriented approach in building the platform. Therefore the
configurability of the platform is inherently achieved. A representation model is
introduced to hierarchically organize components and describe meta-level
information about components. We also present a visual configuration tool
together with a XML-based language for the purpose of platform configuration.
The experimental results show the UPmP is flexible to be configured under
different settings, and the overheads are acceptable.

1 Introduction

With rapid development of multimedia and communication technologies, it becomes
possible to offer multimedia content to people whenever and wherever they are
through different devices, such as personal computer, personal digital assistants
(PDAs) and mobile phones. Multimedia content is widely used in ubiquitous
computing environments among many application fields, such as digital course
management, entertainment, and live surveillance. The number of multimedia content
to access can be quite overwhelming. To quickly and effectively provide content from
large amounts of media information, in the right form, to the right person, the
multimedia content need to be personalized based on the user’s preferences and his
current contextual information, such as time of day, user location, and device
conditions. These services are so-called ubiquitous personalized multimedia services
(UPMSs).

Delivering UPMSs is a challenging task. It relies on many different functions, such
as service management, multimedia adaptation, multimedia recommendation,

1070 Z. Yu et al.

multimedia delivery, etc. Software infrastructures are needed to enable such functions
to be achieved easily and systematically so that the service providers and application
developers just need to concentrate on the application itself. In this paper, we present
a software platform, namely UPmP (Ubiquitous Personalized multimedia Platform)
to support efficient development and deployment of UPMSs. We adopt component-
oriented approach in building the platform. Therefore the configurability of the
platform is achieved inherently. Component-based software design has been widely
utilized in many fields to implement complex functions. A software component is a
unit of composition that can be deployed independently and is subject to composition
by a third party [1]. Three major component models are presented and used
successfully today: COM, CORBA, and Javabeans.

There are several benefits from using the UPmP software platform. First, it
integrates third-party software to accomplish software reusability and complex
function consummation. Second, the platform is configurable and allow service
provider to select different functions based on the service needs. Third, the atomic
components within the platform can be taken from pre-existing applications. It
facilitates service development so as to reduce the cost of development as well as the
time to market.

2 UPmP Architecture

The UPmP architecture consists of three layers: multimedia resources, service
function components, and service instances (UPMSi), as shown in Fig. 1.

Fig. 1. UPmP architecture

2.1 Multimedia Resources

Multimedia resources are composed of multimedia content and corresponding
description metadata. For the sake of interoperability with third-party services and
applications, we adopt MPEG-7 description schema to represent multimedia
metadata. The MPEG-7 Creation DS and Classification DS are used to describe
information about the media item, such as the title, keyword, director, actor, genre,
and language. This information is used to match user preferences. The Variation DS is
used to specify variations of media content as well as their relationships. The
Variation DS plays an important role in our content recommendation by allowing the
selection among the different variations of the media content in order to select the
most appropriate one in adapting to the specific capabilities of the terminal devices
and network conditions.

UPMSi UPMSi ... UPMSi

Multimedia Resources

Service Manager

Multimedia
Recommendation

Multimedia
Adaptation

Multimedia
Delivery

Service Function Components

 UPmP: A Component-Based Configurable Software Platform for UPMSs 1071

The multimedia resources layer can integrate varied multimedia repository from a
wide range of content providers by leveraging the O.K.I (Open Knowledge Initiative)
Repository OSID (Open Service Interface Definition), which gains access to content
in a manner that hides the technical detail by which that content is provided [2]. The
O.K.I Repository Specification has been used to successfully integrate several
applications with multiple content repositories, such as Sakai [3], which aims at
building a collaboration and learning environment for higher education.

2.2 Service Function Components

The service function components are deployed as two sub-layers. The top layer is
Service Manager. The bottom layer contains three components: Multimedia
Recommendation, Multimedia Adaptation, and Multimedia Delivery. The Service
Manager is responsible for lifecycle management of services. It interacts with services
directly, and invokes functionalities supported by the function components in the
bottom layer. Multimedia Recommendation is to select the right content in the right
form for a service request. It takes user preference, terminal capability, and network
condition into account. Multimedia Adaptation adjusts multimedia content to different
requirements from service manager. It mainly involves two kinds of processes:
content summarization and content transcoding, e.g. video-to-image conversion.
Multimedia adaptation can be statically done at authoring time prior to delivery or
dynamically done on-the-fly if needed. Multimedia Delivery is responsible for
streaming or downloading media content to various terminals through different
networks. If the modality recommended is continuous video or audio, the media
deliverer streams the content to terminals. On the other hand, if the modality is static
image or text, the media deliverer just downloads the content.

2.3 Service Instances

The service instances are concrete ubiquitous personalized multimedia services
requested by a wide range of devices in ubiquitous computing environment. There are
two typical scenarios for ubiquitous personalized multimedia services. One is
providing a recommendation list with top L items. The other one is directly presenting
the item with the highest score according to user preferences.

3 Component Representation

Components are functional units forming the UPmP platform. They can be composed
to provide ubiquitous personalized multimedia services. A component comprises two
parts: a metadata description and a processing entity. Component description presents
detailed information of the component including component name, category,
programming language, interface, hardware requirement, and software requirement
(e.g. libraries, depended components). The component description is mainly used in
platform configuration as well as service composition. Component entity is a software
program (code) to accomplish a particular function.

1072 Z. Yu et al.

For the sake of efficient organization, we model the components as a hierarchy. We
give 3-layer definition to UPmP component hierarchy classification. The root element
UPmPComponent is abstraction for all components. It is mainly divided into four
categories, i.e. the second layer includes four items, which are ServiceManaging,
ContentRecommendation, ContentAdaption, and ContentDelivery. The leaf
components are different implementation algorithms or mechanisms of the abstract
function in the upper layer. The UPmP component hierarchy structure is shown in
Fig. 2. For space consideration, we here merely present the detailed structure of
ContentAdaptation component.

Fig. 2. Component hierarchy

For efficient discovery and reuse, information about the component should be

described and advertised. Then the system can lookup and match desired
components for a particular service according to the component metadata. We
propose a service component description language (SCDL) based on XML to
describe component. SCDL defines three kinds of information of a component:
general information, public interface, and composition logic. The general
information indicates a component’s name, category, parent class, and also gives a
brief annotation for the component. The category structure is the same as
component hierarchy presented above. Category and annotation are very useful for
component search and match. The public interface describes input and output
formats, and also the real running entities of the component. The composition logic
is provided to support service composition. It indicates the order of a component
when it is composed with other categories of components using the Following and
FollowedWith elements. It also indicates whether a component can be combined
with its brother component. The components with the same parent class are
regarded as brother components. For instance, Video2Image and Video2Text are
brother components.

Fig. 3 shows a component metadata example. The component’s name is
SComponentExample and its category is Video2Image. The annotation and parent class
are also given. From PublicInterface part, it can be seen that the input of the component
is MPEG file, and the output is JPEG and BMP files. Two executors, mpeg2jpeg.jar and
mpeg2bmp.jar are specified as the real running entities of the component. The
composition logic indicates that the component can follow the components of
ContentRecommendation and ContentDelivery, and be followed by the components of
ContentDelivery in composing a service. However, it cannot be combined with its
brother component.

Video2Video Video2Audio Video2Image Video2Text Audio2Text Image2Text

ContentAdaptation ContentRecommendation ServiceManaging ContentDelivery

UPmPComponent

Image2Image Audio2Audio

 UPmP: A Component-Based Configurable Software Platform for UPMSs 1073

<?xml version=“1.0” encoding=“UTF-8”?>
<SComponent xmlns=“http://www.dcel.nwpu.edu.cn/SComponent_Schema”>
<SComponentDescription>

<GeneralInformation>
<Name>SComponentExample</Name>
<Category>Video2Image</Category>
<Annotation>Transforming a video content into images.</Annotation>
<ParentClass>ContentAdaptation</ParentClass>

</GeneralInformation>
<PublicInterface>

<Input>
 <Format>MPEG</Format>

</Input>
<Output>

 <Format>JPEG</Format>
 <Format>BMP</Format>

</Output>
<Executors>

 <Executor>mpeg2jpeg.jar</Executor>
 <Executor>mpeg2bmp.jar</Executor>

</Executors>
</PublicInterface>
<CompositionLogic>

<Following>
<Category>ContentRecommendation</Category>
<Category>ContentDelivery</Category>

</Following>
<FollowedWith>

<Category>ContentDelivery</Category>
</FollowedWith>
<CombinedWithBrotherComp>NO</CombinedWithBrotherComp>

</CompositionLogic>
</SComponentDescription>
</SComponent>

Fig. 3. Component metadata (example)

4 Platform Configuration

The UPmP platform offers a set of optional functionalities, which can be switched off
at the platform initializtion time. This flexibility is useful because not all the systems
need to exploit the completed capabilities offered by the platform. In the simplest
cases, the platform should support the development of lighter systems, which reduce
the overhead during the interaction with the user. In particular, the developer may
choose the multimedia recommendation techniques best suiting the requirements of
the application domain. For instance, collaborative filtering efficiently support
recommendation of multimedia, but it only works if ratings of the items are available.
In contrast, content-based filtering is more suitable to the cases where meta-level
information about the items is available.

Fig. 4. UPmP configurator

UPmPConfigurator
RecommendationStrategy

AdaptationStrategy

DeliveryStrategy

ManagingStrategy

1074 Z. Yu et al.

To provide this flexibility, we have made the platform configurable so that the
developers can select the functionalities offered by the platform. A GUI-based tool,
called UPmPConfigurator, is proposed to customize platform functionalities
according to needs or characteristics of different systems. The UPmPConfigurator
mainly includes four parts: service managing strategy, content recommendation
strategy, adaptation strategy, and delivery strategy as shown in Fig. 4.

For purpose of configuration at initializtion time, an XML-based platform
configuration language (XPCL) is designed. The Extensible Markup Language
(XML) is an ideal configuration language, because it is the universal format for
structured documents and data on the Web and also extensible. However, XML itself
does not tell platform administrator how to specify platform configuration parameters
for his/her services. We define a set of suitable tags to specify platform running
policies based on XML syntax. The XPCL is accordingly divided into four parts. The
<UPmPConfiguration> tag is the root tag. It contains the entire four parts parameter
or policy configuration. The <ServiceManagingStrategy> tag contains two tags:
<EnterBlockedState> and <EnterWaitingState>. They specify whether the services
enter Blocked or Waiting state respectively. The services are modeled with a lifecycle
management model based on FSM (Finite State Machines), which is presented in our
early work [4]. The <RecommendationStrategy> contains at least one
<RecommendationAlgorithm> tag, which specifies a particular algorithm, e.g.
content-based recommendation. The <AdaptationStrategy> contains at least one
<Transcoding> tag, which is also a container tag. The <Transcoding> tag has one
required attribute, “type”, which identifies the type/class of the transcoding. It
contains at least one <Transcoder> tag. The <DeliveringStrategy> contains at least
one <DeliveringMode> tag.

Fig. 5. Platform configuration (example)

<?xml version=“1.0” encoding=“UTF-8”?>
<UPmP xmlns="http://www.dcel.nwpu.edu.cn/UPmP_Schema">
<UPmPConfiguration>

<ServiceManagingStrategy>
<EnterBlockedState>YES</EnterBlockedState>
<EnterWaitingState>NO</EnterWaitingState>

</ServiceManagingStrategy>
<RecommendationStrategy>

<RecommendationAlgorithm>Content-based Recommendation</RecommendationAlgorithm>
 <RecommendationAlgorithm>Rule-based Recommendation</RecommendationAlgorithm>

</RecommendationStrategy>
<AdaptationStrategy>

<Transcoding type=“Video2Image”>
<Transcoder>MPEG2JPEG</Transcoder>

</Transcoding>
<Transcoding type=“Video2Text”>

<Transcoder>MPEG2TXT</Transcoder>
</Transcoding>
<Transcoding type=“Audio2Text”>

<Transcoder>WAV2TXT</Transcoder>
</Transcoding>

</AdaptationStrategy>
<DeliveryStrategy>

<DeliveringMode>Streaming</DeliveringMode>
<DeliveringMode>Downloading</DeliveringMode>

</DeliveryStrategy>
</UPmPConfiguration>
</UPmP>

 UPmP: A Component-Based Configurable Software Platform for UPMSs 1075

Fig. 5 gives an example of UPmP platform configuration. The services are set to
enter the Blocked state but not the Waiting state. Two recommendation algorithms,
content-based recommendation and rule-based recommendation are included. For
multimedia adaptation, this configuration sets three transcoding mechanisms:
Video2Image, Video2Text, and Audio2Text. The corresponding transcoders are
MPEG2JPEG, MPEG2TXT, and WAV2TXT. The delivery strategy includes
audio/video streaming and image/text downloading.

An XPCL-based description file is generated after a user completes the
configuration through the visual UPmPConfigurator tool. The configurator interprets
the configuration file, loads specified components, and builds a running platform.

5 Service Composition

A multimedia service is built as the composition of UPmP supported functional
components. In our system, service composition is the selection of suited service
components in order to deliver the service to a terminal in appropriate form. It
consists of two steps. The first step is abstract function selection, e.g. multimedia
adaptation. The second one is concrete handler selection, e.g. Video-to-Image
transcoder.

Fig. 6 illustrates some composition paths for multimedia services under different
conditions. S denotes the start point of services, while T stands for the terminal point.
The rectangle contains components for recommendation purposes including
components A, B and C. The oval contains adaptation components D, E, F, G, and H.
The delivery components I and J are represented in the rounded rectangle. In
Fig. 6(a), since the appropriate variation already exits, the service goes directly to
deliver it. In Fig. 6(b), the service firstly performs video-to-text transcoding, and then

Fig. 6. Service composition examples

1076 Z. Yu et al.

downloads the text. In Fig. 6(c), the service first performs video streaming under high
bandwidth, then for the decrease of bandwidth, it performs video-to-text transcoding,
and then delivers the text. In Fig. 6(d), the service first performs video-to-audio
transcoding, then audio streaming, and then for bandwidth decrease dramatically it
has to perform audio-to-text transcoding, last sends the text. In Fig. 6(e), component
A and B are combined for the recommendation.

6 Implementation and Experiment

We have implemented a prototype of UPmP. The visual platform configuration tool
UPmPConfigurator is implemented in Java Swing. The components are all
implemented in Java and built as .jar files. Some media adaptation components are
integrated from third party. To handle component dependency during platform
configuration and service composition, we can utilize the Dependency Injection [5]
pattern provided by the Spring framework [6]. Fig. 7 shows the main interface of
UPmPConfigurator. It allows the developer to choose different strategies for service
management, content adaptation, content delivery, and content recommendation.
When a content adaptation button, e.g. Video-to-Image, is clicked, a list of
transcoders will be presented for user’s choice. For ubiquitous multimedia
recommendation, rule-based technique is always combined with the other
recommendation algorithms. It is used to infer the appropriate presentation form of a
selected content from network condition and device capability [7]. The developers
can directly choose some existing rules or define specific rules of their own.

We mainly evaluate our system by measuring the overhead of UPmP’s
configuration in terms of time. It includes the time to parse and interpret the
configuration XML file, load specified components, and link them together. The
experiment is conducted on a PC with 1.6 GHz Pentium 4 CPU, and 1 GB RAM
running Windows XP. There are five different setup configurations involved in this
experiment. The configuration details are presented in Table 1. Configuration 1 is a
completed setup with all the four categories of components selected. Configuration 2,
3, and 4 test the overheads of different types of components. Configuration 5 is the
configuration for a real running system. When selecting a category of content
adaptation component, e.g. Video-to-Image, we simply select all the transcoders of it.

Table 1. Configuration details

Configuration Selected components

1 all the four categories of components

2 all the service managing and recommendation components

3 all the content adaptation components

4 all the content delivery components

5 Enter Blocked State, Video-to-Image, Video-to-Text, Audio-to-
Text, Streaming, Downloading, Content-Based Recommendation,
and Rule-Based Recommendation

 UPmP: A Component-Based Configurable Software Platform for UPMSs 1077

The experimental results are shown in Fig. 8, in which the time for each
configuration is an average value of 10 runs. The completed configuration takes about
8.5 seconds. We can also observe that the main configuration overhead comes from
linking content adaptation components, which takes nearly 75% of the total
configuration time. Fortunately, this overhead is merely generated during the platform
setup. It does not affect the performance of service delivery at running time. Through
this experiment, we could conclude that the UPmP is flexible to be configured under
different settings, and the overheads are acceptable.

0

2000

4000

6000

8000

10000

1 2 3 4 5

Configuration

T
im

e
(m

s)

Fig. 7. Main interface of UPmPConfigurator Fig. 8. Overhead of UPmP configuration

7 Related Work

There has been much research work done specifically to provide systematic
architectural support for ubiquitous multimedia delivery. Gamma [8] is a content-
adaptation server for wireless multimedia applications, which supports the automatic
and transparent transcoding for individual users according to their pre-configured user
profiles. CANS [9] is an application-level infrastructure for injecting application-
specific components into the network. It supports automatic deployment of
transcoding components for ubiquitous and network-aware access to Internet services.
Dali [10] is a set of reusable libraries, which can be used for building processing-
intensive multimedia software. Gamma, CANS, and Dali are mainly towards content
adaptation without the support of service management and multimedia
recommendation. QCompiler [11] is a programming framework to support building
ubiquitous multimedia applications, which are mobile and deployable in different
ubiquitous environments, and provide acceptable application-specific Quality-of-
Service (QoS) guarantees. However, QCompiler does not involve server platform
configuration and personalization functionalities. CAPNET [12] is a context-aware
middleware for mobile multimedia applications. It fulfils broad functionalities
including service discovery, event management, context storage, media content
retrieval and adaptation to various mobile devices. But CAPNET is not built based on
component and is not configurable in setup.

Recently, to deliver personalized multimedia to ubiquitous devices, some
researchers have considered both user preference and device/network capability to

1078 Z. Yu et al.

generate appropriate presentation to terminals e.g. [13] and [14]. However, none of
them are proposed from the middleware perspective.

8 Conclusion

We described the architecture and key features of the UPmP, a general-purpose
platform to support the deployment of ubiquitous personalized multimedia services.
The major contributions of this paper include: (1) proposing a three-layer architecture
for the general-purpose software platform; (2) introducing a component representation
model that is helpful for component organization, indexing, and description; (3)
presenting a configuration tool and an XML-based platform configuration language;
(4) illustrating service composition under different conditions.

Future work is planned on the extension of the platform to support re-configuration
at running time. We also envision deploying function components in a network of
computers to improve performance in terms of throughput and scalability. It will call
for the incorporation of load sharing and task scheduling mechanisms.

Acknowledgment

This work is partially supported by the Ministry of Education, Culture, Sports,
Science and Technology of Japan under the “Development of Fundamental Software
Technologies for Digital Archives” project, and the Doctorate Foundation of
Northwestern Polytechnical University of China.

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, Reading, Mass (1998)

2. Thorne, S., and Sim, S.: Integrating Applications with Repositories Using the O.K.I
Repository OSID. JA-SIG Conference. (2005)

3. Sakai, http://sakaiproject.org/
4. Yu, Z.W., Zhou, X.S., Zhang, D.Q., Lugmayr, A., and Yu, Z.Y.: A Ubiquitous

Personalized Multimedia Service Model Based on FSM, Proc. Of the 6th IEEE Intl. Conf.
on Information and Technology: Coding and Computing, USA, 801-802 (2005)

5. Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern.
http://www.martinfowler.com/articles/injection.html. (2004)

6. Spring Framework, http://www.springframework.org/
7. Yu, Z.W., Zhang, D.Q., Zhou, X.S., Chin, C.Y., Wang, X.H., and Men, J.: Supporting

Context-Aware Media Recommendation for Smart Phones, IEEE Pervasive Computing
Magazine, Vol. 5, No. 3, July-September (2006)

8. Lee, Y.W., Chandranmenon, G., and Miller, S.C.: Gamma: A Content-Adaptation Server
for Wireless Multimedia Applications. Lucent Technologies white paper. (2003)

9. Fu, X., Shi, W., Akkerman, A., and Karamcheti, V.: CANS: Composable, Adaptive
Network Services Infrastructure. USENIX Symposium on Internet Technologies and
Systems (USITS), March 2001, 135-146 (2001)

 UPmP: A Component-Based Configurable Software Platform for UPMSs 1079

10. Ooi, W.T., et al.: Dali: A Multimedia Software Library. Proceedings of 1999 SPIE
Multimedia Computing and Networking, 264-275 (1999)

11. Wichadakul, D., Gu, X.H., and Nahrstedt, K.: A Programming Framework for Quality-
Aware Ubiquitous Multimedia Applications. ACM Multimedia 2002, 631-640. (2002)

12. Davidyuk, O., et al.: Context-aware middleware for mobile multimedia applications. The
3rd International Conference on Mobile and Ubiquitous Multimedia, 213-220 (2004)

13. Steiger, O., Ebrahimi, T., and Sanjuan, D.M.: MPEG-based Personalized Content
Delivery. IEEE Intl Conf. on Image Processing, 45-48 (2003)

14. Lemlouma, T., and Layaida, N.: Encoding Multimedia Presentations for User Preferences
and Limited Environments. IEEE ICME, 165-168 (2003)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

